首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >Visual Object Tracking Based on Cross-Modality Gaussian-Bernoulli Deep Boltzmann Machines with RGB-D Sensors
【2h】

Visual Object Tracking Based on Cross-Modality Gaussian-Bernoulli Deep Boltzmann Machines with RGB-D Sensors

机译:基于带RGB-D传感器的跨模态高斯-伯努利深玻尔兹曼机器的视觉对象跟踪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Visual object tracking technology is one of the key issues in computer vision. In this paper, we propose a visual object tracking algorithm based on cross-modality featuredeep learning using Gaussian-Bernoulli deep Boltzmann machines (DBM) with RGB-D sensors. First, a cross-modality featurelearning network based on aGaussian-Bernoulli DBM is constructed, which can extract cross-modality features of the samples in RGB-D video data. Second, the cross-modality features of the samples are input into the logistic regression classifier, andthe observation likelihood model is established according to the confidence score of the classifier. Finally, the object tracking results over RGB-D data are obtained using aBayesian maximum a posteriori (MAP) probability estimation algorithm. The experimental results show that the proposed method has strong robustness to abnormal changes (e.g., occlusion, rotation, illumination change, etc.). The algorithm can steadily track multiple targets and has higher accuracy.
机译:视觉对象跟踪技术是计算机视觉中的关键问题之一。在本文中,我们提出了一种基于交叉模式特征深度学习的视觉对象跟踪算法,该算法使用具有RGB-D传感器的高斯-伯努利深度玻尔兹曼机器(DBM)进行。首先,构建了基于aGaussian-Bernoulli DBM的跨模态特征学习网络,该网络可以提取RGB-D视频数据中样本的跨模态特征。其次,将样本的跨模态特征输入到逻辑回归分类器中,并根据分类器的置信度得分建立观察似然模型。最后,使用贝叶斯最大后验(MAP)概率估计算法获得RGB-D数据上的对象跟踪结果。实验结果表明,该方法对异常变化(例如遮挡,旋转,照度变化等)具有很强的鲁棒性。该算法可以稳定地跟踪多个目标,具有较高的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号