首页> 外文期刊>Image Processing, IET >Fast algorithm for large-scale subspace clustering by LRR
【24h】

Fast algorithm for large-scale subspace clustering by LRR

机译:LRR大型子空间聚类的快速算法

获取原文
获取原文并翻译 | 示例

摘要

Low-rank representation (LRR) and its variants have been proved to be powerful tools for handling subspace clustering problems. Most of these methods involve a sub-problem of computing the singular value decomposition of an n x n matrix, which leads to a computation complexity of O(n(3)). Obviously, when n is large, it will be time consuming. To address this problem, the authors introduce a fast solution, which reformulates the large-scale problem to an equal form with smaller size. Thus, the proposed method remarkably reduces the computation complexity by solving a small-scale problem. Theoretical analysis proves the efficiency of the proposed model. Furthermore, we extend LRR to a general model by using Schatten p-norm instead of nuclear norm and present a fast algorithm to solve large-scale problem. Experiments on MNIST and Caltech101 databse illustrate the equivalence of the proposed algorithm and the original LRR solver. Experimental results show that the proposed algorithm is remarkably faster than traditional LRR algorithm, especially in the case of large sample number.
机译:已经证明,低秩表示(LRR)及其变体是用于处理子空间聚类问题的强大工具。这些方法中的大多数涉及计算N X N矩阵的奇异值分解的子问题,这导致O(n(3))的计算复杂度。显然,当n很大时,它会耗时。为了解决这个问题,作者介绍了一个快速解决方案,它将大规模问题重新重新装饰到具有较小尺寸的平等形式。因此,所提出的方法通过解决小规模问题,显着降低了计算复杂性。理论分析证明了拟议模型的效率。此外,我们通过使用Schatten P-Norm而不是核规范来扩展LRR到一般模型,并呈现快速算法来解决大规模问题。 MNIST和CALTECH101 DATABSE上的实验说明了所提出的算法和原始LRR求解器的等价性。实验结果表明,该算法比传统的LRR算法更快,特别是在大型样品号的情况下。

著录项

  • 来源
    《Image Processing, IET》 |2020年第8期|1475-1480|共6页
  • 作者单位

    Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China;

    Northwestern Polytech Univ Ctr Opt IMagery Anal & Learning Xian 710069 Peoples R China;

    Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China;

    Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号