首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Tensor LRR and Sparse Coding-Based Subspace Clustering
【24h】

Tensor LRR and Sparse Coding-Based Subspace Clustering

机译:基于Tensor LRR和稀疏编码的子空间聚类

获取原文
获取原文并翻译 | 示例

摘要

Subspace clustering groups a set of samples from a union of several linear subspaces into clusters, so that the samples in the same cluster are drawn from the same linear subspace. In the majority of the existing work on subspace clustering, clusters are built based on feature information, while sample correlations in their original spatial structure are simply ignored. Besides, original high-dimensional feature vector contains noisy/redundant information, and the time complexity grows exponentially with the number of dimensions. To address these issues, we propose a tensor low-rank representation (TLRR) and sparse coding-based (TLRRSC) subspace clustering method by simultaneously considering feature information and spatial structures. TLRR seeks the lowest rank representation over original spatial structures along all spatial directions. Sparse coding learns a dictionary along feature spaces, so that each sample can be represented by a few atoms of the learned dictionary. The affinity matrix used for spectral clustering is built from the joint similarities in both spatial and feature spaces. TLRRSC can well capture the global structure and inherent feature information of data and provide a robust subspace segmentation from corrupted data. Experimental results on both synthetic and real-world data sets show that TLRRSC outperforms several established stateof- the-art methods.
机译:子空间聚类将来自几个线性子空间的并集的一组样本分组为聚类,以便从相同的线性子空间中抽取同一聚类中的样本。在大多数有关子空间聚类的现有工作中,聚类是基于特征信息构建的,而原始空间结构中的样本相关性则被忽略。此外,原始的高维特征向量包含有噪声/冗余信息,时间复杂度随维数成倍增长。为了解决这些问题,我们提出了一种张量低秩表示(TLRR)和基于稀疏编码(TLRRSC)的子空间聚类方法,同时考虑了特征信息和空间结构。 TLRR在所有空间方向上的原始空间结构上寻求最低等级的表示。稀疏编码沿特征空间学习字典,因此每个样本都可以由学习字典的几个原子表示。用于光谱聚类的亲和度矩阵是根据空间和特征空间中的联合相似性构建的。 TLRRSC可以很好地捕获数据的全局结构和固有特征信息,并从损坏的数据中提供可靠的子空间分段。在综合和真实数据集上的实验结果表明,TLRRSC的性能优于几种已建立的最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号