首页> 外文期刊>Visualization and Computer Graphics, IEEE Transactions on >A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects
【24h】

A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects

机译:模拟可变形物体切割的六面体多网格方法

获取原文
获取原文并翻译 | 示例

摘要

We present a hexahedral finite element method for simulating cuts in deformable bodies using the corotational formulation of strain at high computational efficiency. Key to our approach is a novel embedding of adaptive element refinements and topological changes of the simulation grid into a geometric multigrid solver. Starting with a coarse hexahedral simulation grid, this grid is adaptively refined at the surface of a cutting tool until a finest resolution level, and the cut is modeled by separating elements along the cell faces at this level. To represent the induced discontinuities on successive multigrid levels, the affected coarse grid cells are duplicated and the resulting connectivity components are distributed to either side of the cut. Drawing upon recent work on octree and multigrid schemes for the numerical solution of partial differential equations, we develop efficient algorithms for updating the systems of equations of the adaptive finite element discretization and the multigrid hierarchy. To construct a surface that accurately aligns with the cuts, we adapt the splitting cubes algorithm to the specific linked voxel representation of the simulation domain we use. The paper is completed by a convergence analysis of the finite element solver and a performance comparison to alternative numerical solution methods. These investigations show that our approach offers high computational efficiency and physical accuracy, and that it enables cutting of deformable bodies at very high resolutions.
机译:我们提出了一种六面体有限元方法,用于以高计算效率使用应变的确定公式模拟可变形体中的切口。我们方法的关键是将自适应元素的改进和仿真网格的拓扑变化新颖地嵌入到几何多网格求解器中。从粗略的六面体模拟网格开始,在切割工具的表面自适应地优化该网格,直到达到最高分辨率为止,并通过在该级别沿单元面分离元素来对切割进行建模。为了表示连续多网格级别上的诱导不连续性,将受影响的粗网格单元进行复制,并将得到的连通性分量分布到切口的任一侧。利用最近在八叉树和多重网格方案上解决偏微分方程数值解的工作,我们开发了用于更新自适应有限元离散化和多重网格层次方程组的有效算法。为了构建与切口精确对齐的表面,我们使splitting cubes算法适应于我们使用的仿真域的特定链接体素表示。本文通过对有限元求解器的收敛性分析以及与其他数值求解方法的性能比较来完成。这些研究表明,我们的方法具有很高的计算效率和物理精度,并且能够以很高的分辨率切割可变形体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号