首页> 外文期刊>IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews >Nonlinear system modeling by competitive learning and adaptivefuzzy inference system
【24h】

Nonlinear system modeling by competitive learning and adaptivefuzzy inference system

机译:基于竞争学习和自适应模糊推理系统的非线性系统建模

获取原文
获取原文并翻译 | 示例

摘要

Modeling nonlinear systems by neural networks and fuzzy systemsnencounters problems such as the conflict between overfitting and goodngeneralization and low reliability, which requires a great number ofnfuzzy rules or neural nodes and uses very complicated learningnalgorithms. A new adaptive fuzzy inference system, combined with anlearning algorithm, is proposed to cope with these problems. First, thenalgorithm partitions the input space into some local regions byncompetitive learning, then it determines the decision boundaries fornlocal input regions, and finally, based on the decision boundaries, itnlearns the fuzzy rule for each local region by recursive least squaresn(RLS). In the learning algorithm, the key role of the decisionnboundaries is highly emphasized. To demonstrate the validity of thenproposed learning approach and the new adaptive fuzzy inference system,nfour examples are studied by the proposed method and compared with thenprevious results
机译:通过神经网络和模糊系统对非线性系统进行建模会遇到诸如过度拟合与良好泛化之间的冲突以及可靠性低等问题,这需要大量的模糊规则或神经节点,并使用非常复杂的学习算法。提出了一种新的自适应模糊推理系统,并结合了学习算法,以解决这些问题。首先,算法通过竞争性学习将输入空间划分为一些局部区域,然后确定局部输入区域的决策边界,最后,基于决策边界,通过递归最小二乘(RLS)学习每个局部区域的模糊规则。在学习算法中,决策边界的关键作用得到了高度强调。为了证明所提出的学习方法和新的自适应模糊推理系统的有效性,该方法研究了四个例子,并与先前的结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号