首页> 外文期刊>Fuzzy sets and systems >State space black-box modelling via Markov parameters based on evolving type-2 neural-fuzzy inference system for nonlinear multivariable dynamic systems
【24h】

State space black-box modelling via Markov parameters based on evolving type-2 neural-fuzzy inference system for nonlinear multivariable dynamic systems

机译:通过Markov参数的状态空间黑匣子建模基于不断变化的非线性多变量动态系统的演化2型神经模糊推理系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an approach for state-space interval type-2 neural-fuzzy identification of multivariable dynamic systems, in an evolving and incremental learning context, is proposed. In combination with type-2 fuzzy systems, the adopted methodology regards the following aspects: recursive learning of the footprint of uncertainty, and recursive learning of the rule consequents part by a recursive linear state-space approaches where Markov parameters are incrementally and robustly learnt in sample-wise manner. The efficiency and applicability of the proposed methodology are demonstrated through experimental and computational results and compared with prominent learning algorithms of the literature. (C) 2019 Elsevier B.V. All rights reserved.
机译:在本文中,提出了一种用于在不可变量动态系统中的状态间隔 - 2型神经模糊识别的方法,在不可变量动态系统中,在演变和增量学习上下文中。结合了2型模糊系统,所采用的方法至关以下方面:递归学习不确定性的占用空间,并通过递归线性状态空间方法进行递归后果的递归学习,其中马尔可夫参数逐步且鲁棒地学习样本明智的方式。通过实验和计算结果证明了所提出的方法的效率和适用性,并与文献的突出学习算法相比。 (c)2019 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号