首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >Codevelopmental Learning Between Human and Humanoid Robot Using a Dynamic Neural-Network Model
【24h】

Codevelopmental Learning Between Human and Humanoid Robot Using a Dynamic Neural-Network Model

机译:使用动态神经网络模型的人与类人机器人之间的共同发展学习

获取原文
获取原文并翻译 | 示例

摘要

This paper examines characteristics of interactive learning between human tutors and a robot having a dynamic neural-network model, which is inspired by human parietal cortex functions. A humanoid robot, with a recurrent neural network that has a hierarchical structure, learns to manipulate objects. Robots learn tasks in repeated self-trials with the assistance of human interaction, which provides physical guidance until the tasks are mastered and learning is consolidated within the neural networks. Experimental results and the analyses showed the following: 1) codevelopmental shaping of task behaviors stems from interactions between the robot and a tutor; 2) dynamic structures for articulating and sequencing of behavior primitives are self-organized in the hierarchically organized network; and 3) such structures can afford both generalization and context dependency in generating skilled behaviors.
机译:本文研究了人类导师和具有动态神经网络模型的机器人之间的交互式学习特性,该模型受人类顶叶皮层功能的启发。具有循环神经网络(具有分层结构)的类人机器人学习操纵对象。机器人在人类互动的帮助下以反复的自我试验学习任务,这将提供物理指导,直到掌握任务并在神经网络中巩固学习为止。实验结果和分析表明:1)任务行为的共同发展塑造源于机器人与导师之间的相互作用; 2)在层次结构化的网络中,用于组织和配置行为原语的动态结构是自组织的; 3)这样的结构可以在产生熟练的行为时提供概括性和上下文依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号