首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Weakly Supervised Training of a Sign Language Recognition System Using Multiple Instance Learning Density Matrices
【24h】

Weakly Supervised Training of a Sign Language Recognition System Using Multiple Instance Learning Density Matrices

机译:使用多实例学习密度矩阵的手语识别系统的弱监督训练

获取原文
获取原文并翻译 | 示例

摘要

A system for automatically training and spotting signs from continuous sign language sentences is presented. We propose a novel multiple instance learning density matrix algorithm which automatically extracts isolated signs from full sentences using the weak and noisy supervision of text translations. The automatically extracted isolated samples are then utilized to train our spatiotemporal gesture and hand posture classifiers. The experiments were carried out to evaluate the performance of the automatic sign extraction, hand posture classification, and spatiotemporal gesture spotting systems. We then carry out a full evaluation of our overall sign spotting system which was automatically trained on 30 different signs.
机译:提出了一种用于从连续的手语句子中自动训练和发现标志的系统。我们提出了一种新颖的多实例学习密度矩阵算法,该算法使用文本翻译的弱和嘈杂的监督自动从完整句子中提取孤立的符号。然后,自动提取的孤立样本将用于训练我们的时空手势和手势分类器。进行了实验,以评估自动符号提取,手势分类和时空手势识别系统的性能。然后,我们对整个标志识别系统进行了全面评估,该系统会自动对30种不同的标志进行培训。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号