首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Weakly Supervised Large Scale Object Localization with Multiple Instance Learning and Bag Splitting
【24h】

Weakly Supervised Large Scale Object Localization with Multiple Instance Learning and Bag Splitting

机译:具有多实例学习和包拆分功能的弱监督大型对象本地化

获取原文
获取原文并翻译 | 示例

摘要

Localizing objects of interest in images when provided with only image-level labels is a challenging visual recognition task. Previous efforts have required carefully designed features and have difficulty in handling images with cluttered backgrounds. Up-scaling to large datasets also poses a challenge to applying these methods to real applications. In this paper, we propose an efficient and effective learning framework called MILinear, which is able to learn an object localization model from large-scale data without using bounding box annotations. We integrate rich general prior knowledge into a learning model using a large pre-trained convolutional network. Moreover, to reduce ambiguity in positive images, we present a bag-splitting algorithm that iteratively generates new negative bags from positive ones. We evaluate the proposed approach on the challenging Pascal VOC 2007 dataset, and our method outperforms other state-of-the-art methods by a large margin; some results are even comparable to fully supervised models trained with bounding box annotations. To further demonstrate scalability, we also present detection results on the ILSVRC 2013 detection dataset, and our method outperforms supervised deformable part-based model without using box annotations.
机译:仅提供图像级标签时,在图像中定位感兴趣的对象是一项具有挑战性的视觉识别任务。先前的努力需要精心设计的功能,并且难以处理背景混乱的图像。扩展到大型数据集也给将这些方法应用于实际应用提出了挑战。在本文中,我们提出了一种有效且有效的学习框架,称为MILinear,它能够从大规模数据中学习对象定位模型,而无需使用边界框注释。我们使用大型预训练卷积网络将丰富的先验知识整合到学习模型中。此外,为了减少正片图像中的歧义,我们提出了一种袋拆分算法,该算法从正片中迭代生成新的负片袋。我们在具有挑战性的Pascal VOC 2007数据集上评估了所提出的方法,并且我们的方法大大优于其他最新方法。一些结果甚至可以与使用边界框注释训练的完全监督模型相媲美。为了进一步证明可伸缩性,我们还在ILSVRC 2013检测数据集上显示了检测结果,并且我们的方法在不使用框注的情况下优于监督的基于可变形零件的模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号