首页> 中文期刊> 《模式识别与人工智能》 >具有噪声过滤功能的协同训练半监督主动学习算法

具有噪声过滤功能的协同训练半监督主动学习算法

     

摘要

针对基于半监督学习的分类器利用未标记样本训练会引入噪声而使得分类性能下降的情形,文中提出一种具有噪声过滤功能的协同训练半监督主动学习算法.该算法以3个模糊深隐马尔可夫模型进行协同半监督学习,在适当的时候主动引入一些人机交互来补充类别标记,避免判决类别不相同时的拒判和初始时判决一致即认为正确的误判情形.同时加入噪声过滤机制,用以过滤由机器自动标记的可能是噪声的样本.将该算法应用于人脸表情识别.实验结果表明,该算法能有效提高未标记样本的利用率并降低半监督学习而引入的噪声,提高表情识别的准确率.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号