首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Weakly Supervised Object Localization with Multi-Fold Multiple Instance Learning
【24h】

Weakly Supervised Object Localization with Multi-Fold Multiple Instance Learning

机译:具有多重折叠多实例学习的弱监督对象定位

获取原文
获取原文并翻译 | 示例

摘要

Object category localization is a challenging problem in computer vision. Standard supervised training requires bounding box annotations of object instances. This time-consuming annotation process is sidestepped in weakly supervised learning. In this case, the supervised information is restricted to binary labels that indicate the absence/presence of object instances in the image, without their locations. We follow a multiple-instance learning approach that iteratively trains the detector and infers the object locations in the positive training images. Our main contribution is a multi-fold multiple instance learning procedure, which prevents training from prematurely locking onto erroneous object locations. This procedure is particularly important when using high-dimensional representations, such as Fisher vectors and convolutional neural network features. We also propose a window refinement method, which improves the localization accuracy by incorporating an objectness prior. We present a detailed experimental evaluation using the PASCAL VOC 2007 dataset, which verifies the effectiveness of our approach.
机译:对象类别的本地化是计算机视觉中一个具有挑战性的问题。标准的监督训练需要对象实例的边界框注释。这种耗时的注释过程在弱监督学习中被绕开了。在这种情况下,受监管的信息仅限于二进制标签,该二进制标签指示图像中对象实例的存在/不存在及其位置。我们遵循多实例学习方法,该方法迭代地训练检测器并推断出正训练图像中的对象位置。我们的主要贡献是多重多实例学习过程,可防止训练过早地锁定错误的对象位置。当使用高维表示形式(例如Fisher向量和卷积神经网络特征)时,此过程特别重要。我们还提出了一种窗口细化方法,该方法可以通过结合先验对象来提高定位精度。我们使用PASCAL VOC 2007数据集进行了详细的实验评估,验证了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号