首页> 外文期刊>Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on >Microarray Data Classifier Consisting of k-Top-Scoring Rank-Comparison Decision Rules With a Variable Number of Genes
【24h】

Microarray Data Classifier Consisting of k-Top-Scoring Rank-Comparison Decision Rules With a Variable Number of Genes

机译:基因数目可变的k顶评分秩比较决策规则组成的微阵列数据分类器

获取原文
获取原文并翻译 | 示例

摘要

Microarray experiments generate quantitative expression measurements for thousands of genes simultaneously, which is useful for phenotype classification of many diseases. Our proposed phenotype classifier is an ensemble method with k-top-scoring decision rules. Each rule involves a number of genes, a rank comparison relation among them, and a class label. Current classifiers, which are also ensemble methods, consist of k-top-scoring decision rules. Some of these classifiers fix the number of genes in each rule as a triple or a pair. In this paper, we generalize the number of genes involved in each rule. The number of genes in each rule ranges from 2 to N, respectively. Generalizing the number of genes increases the robustness and the reliability of the classifier for the class prediction of an independent sample. Our algorithm saves resources by combining shorter rules in order to build a longer rule. It converges rapidly toward its high-scoring rule list by implementing several heuristics. The parameter k is determined by applying leave-one-out cross validation to the training dataset.
机译:微阵列实验可同时生成数千个基因的定量表达测量值,这对许多疾病的表型分类很有用。我们提出的表型分类器是一种具有k-top评分决策规则的集成方法。每个规则都涉及许多基因,它们之间的等级比较关系以及类别标签。当前的分类器也是合奏方法,由k个最高得分决策规则组成。其中一些分类器将每个规则中的基因数量固定为三对或一对。在本文中,我们概括了每个规则中涉及的基因数量。每个规则中的基因数量分别为2到N。泛化基因的数量可以提高分类器对独立样本的分类预测的鲁棒性和可靠性。我们的算法通过组合较短的规则以构建较长的规则来节省资源。通过实施几种启发式方法,它迅速趋向高分规则列表。通过对训练数据集应用留一法交叉验证来确定参数k。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号