首页> 外文期刊>Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on >Information Flow Control for Collaborative Distributed Data Fusion and Multisensor Multitarget Tracking
【24h】

Information Flow Control for Collaborative Distributed Data Fusion and Multisensor Multitarget Tracking

机译:协同分布式数据融合与多传感器多目标跟踪的信息流控制

获取原文
获取原文并翻译 | 示例

摘要

Decentralized multisensor-multitarget tracking has numerous advantages over single-sensor or single-platform tracking. In this paper, a solution for one of the main problems in decentralized tracking, namely, distributed information transfer and fusion among the participating platforms, is presented. A decision mechanism for collaborative distributed data fusion that provides each platform with the required data for the fusion process while substantially reducing redundancy in the information flow in the overall system is presented as well. A distributed data fusion system consisting of platforms that are decentralized, heterogenous, and potentially unreliable is considered. In this study, the approach to use an information-based objective function is utilized. The objective function is based on the posterior Cramér–Rao lower bound and constitutes the basis of a reward structure for Markov decision processes that are used to control the data-fusion process. Three distributed data-fusion algorithms—associated measurement fusion, tracklet fusion, and track-to-track fusion—are analyzed. This paper also provides a detailed analysis of communication and computational load in distributed tracking algorithms. Simulation examples demonstrate the operation and the performance results of the system.
机译:与单传感器或单平台跟踪相比,分散式多传感器多目标跟踪具有许多优势。针对分布式跟踪中的主要问题之一,即参与平台之间的分布式信息传递和融合,提出了一种解决方案。还提出了一种用于协作式分布式数据融合的决策机制,该机制为每个平台提供融合过程所需的数据,同时实质上减少了整个系统中信息流的冗余度。考虑了一个分布式数据融合系统,该系统由分散,异构且可能不可靠的平台组成。在这项研究中,使用了基于信息的目标函数的方法。目标函数基于后Cramér-Rao下界,并构成用于控制数据融合过程的马尔可夫决策过程的奖励结构的基础。分析了三种分布式数据融合算法-关联的测量融合,小波融合和轨间融合。本文还详细分析了分布式跟踪算法中的通信和计算负荷。仿真实例演示了系统的操作和性能结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号