首页> 外文期刊>Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on >Robust Multiperson Detection and Tracking for Mobile Service and Social Robots
【24h】

Robust Multiperson Detection and Tracking for Mobile Service and Social Robots

机译:移动服务和社交机器人的强大多人检测和跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an efficient system which integrates multiple vision models for robust multiperson detection and tracking for mobile service and social robots in public environments. The core technique is a novel maximum likelihood (ML)-based algorithm which combines the multimodel detections in mean-shift tracking. First, a likelihood probability which integrates detections and similarity to local appearance is defined. Then, an expectation-maximization (EM)-like mean-shift algorithm is derived under the ML framework. In each iteration, the E-step estimates the associations to the detections, and the M-step locates the new position according to the ML criterion. To be robust to the complex crowded scenarios for multiperson tracking, an improved sequential strategy to perform the mean-shift tracking is proposed. Under this strategy, human objects are tracked sequentially according to their priority order. To balance the efficiency and robustness for real-time performance, at each stage, the first two objects from the list of the priority order are tested, and the one with the higher score is selected. The proposed method has been successfully implemented on real-world service and social robots. The vision system integrates stereo-based and histograms-of-oriented-gradients-based human detections, occlusion reasoning, and sequential mean-shift tracking. Various examples to show the advantages and robustness of the proposed system for multiperson tracking from mobile robots are presented. Quantitative evaluations on the performance of multiperson tracking are also performed. Experimental results indicate that significant improvements have been achieved by using the proposed method.
机译:本文提出了一个有效的系统,该系统集成了多个视觉模型,用于在公共环境中对移动服务和社交机器人进行健壮的多人检测和跟踪。核心技术是一种新颖的基于最大似然(ML)的算法,该算法在均值漂移跟踪中结合了多模型检测。首先,定义将检测与局部外观的相似性相结合的似然概率。然后,在ML框架下导出了期望最大化(EM)式均值漂移算法。在每次迭代中,E步骤估计与检测的关联,而M步骤根据ML准则定位新位置。为了对复杂的,多人跟踪的拥挤场景具有鲁棒性,提出了一种改进的执行均值漂移跟踪的顺序策略。在这种策略下,根据人类对象的优先顺序对其进行顺序跟踪。为了在实时性能的效率和鲁棒性之间取得平衡,在每个阶段都要测试优先顺序列表中的前两个对象,然后选择得分较高的对象。所提出的方法已经在现实世界的服务和社交机器人上成功实现。视觉系统集成了基于立体的和基于直方图的梯度梯度的人体检测,遮挡推理和顺序均值漂移跟踪。给出了各种示例,以显示所提出的用于从移动机器人进行多人跟踪的系统的优点和鲁棒性。还对多人跟踪的性能进行了定量评估。实验结果表明,通过使用所提出的方法已经实现了重大改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号