首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Robust Multiperson Tracking from a Mobile Platform
【24h】

Robust Multiperson Tracking from a Mobile Platform

机译:从移动平台进行可靠的多人跟踪

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we address the problem of multiperson tracking in busy pedestrian zones using a stereo rig mounted on a mobile platform. The complexity of the problem calls for an integrated solution that extracts as much visual information as possible and combines it through cognitive feedback cycles. We propose such an approach, which jointly estimates camera position, stereo depth, object detection, and tracking. The interplay between those components is represented by a graphical model. Since the model has to incorporate object-object interactions and temporal links to past frames, direct inference is intractable. We, therefore, propose a two-stage procedure: for each frame, we first solve a simplified version of the model (disregarding interactions and temporal continuity) to estimate the scene geometry and an overcomplete set of object detections. Conditioned on these results, we then address object interactions, tracking, and prediction in a second step. The approach is experimentally evaluated on several long and difficult video sequences from busy inner-city locations. Our results show that the proposed integration makes it possible to deliver robust tracking performance in scenes of realistic complexity.
机译:在本文中,我们使用安装在移动平台上的立体声钻机解决了在繁忙的行人区进行多人跟踪的问题。问题的复杂性要求采用集成解决方案,该解决方案应提取尽可能多的视觉信息,并通过认知反馈周期将其组合在一起。我们提出了这样一种方法,该方法可以共同估算相机位置,立体深度,物体检测和跟踪。这些组件之间的相互作用由图形模型表示。由于该模型必须将对象-对象的交互和时间链接纳入到过去的框架中,因此直接推断是很棘手的。因此,我们提出了一个两阶段的过程:对于每个帧,我们首先求解模型的简化版本(不考虑交互作用和时间连续性)以估计场景几何形状和一组不完整的对象检测。根据这些结果,然后在第二步中处理对象的交互,跟踪和预测。实验方法是从繁忙的市区位置对几个长而困难的视频序列进行实验评估。我们的结果表明,所提出的集成使得在现实复杂的场景中提供强大的跟踪性能成为可能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号