首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Integral Reinforcement Learning-Based Adaptive NN Control for Continuous-Time Nonlinear MIMO Systems With Unknown Control Directions
【24h】

Integral Reinforcement Learning-Based Adaptive NN Control for Continuous-Time Nonlinear MIMO Systems With Unknown Control Directions

机译:基于整体加固学习的自适应NN控制,用于具有未知控制方向的连续时间非线性MIMO系统

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an integral reinforcement learning-based adaptive neural network (NN) tracking control is developed for the continuous-time (CT) nonlinear system with unknown control directions. The long-term performance index in the CT domain is prescribed. Critic and action NNs are designed to approximate the unavailable long-term performance index and the unknown dynamics, respectively. The reinforcement signal is explicitly embedded in the updated law of the action NN and then the estimated long-term performance index can be minimized. Rigorous theoretical analysis is provided to show that the closed-loop system is stabilized and all closed-loop signals are semiglobally uniformly ultimately bounded. Finally, to demonstrate the control performance, simulation results are provided to verify the tacking control performance of an autonomous underwater vehicle model.
机译:在本文中,为具有未知控制方向的连续时间(CT)非线性系统开发了基于积分的基于加强学习的自适应神经网络(NN)跟踪控制。规定CT域的长期性能指数。批评者和行动NNS旨在分别近似于不可用的长期性能指数和未知动态。在动作NN的更新规律中明确地嵌入了加强信号,然后可以最小化估计的长期性能指数。提供严格的理论分析以表明闭环系统稳定,并且所有闭环信号都是半球形均匀的最终限定的。最后,为了展示控制性能,提供了仿真结果以验证自主水下车型的粘性控制性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号