首页> 外文期刊>IEEE Transactions on Systems, Man, and Cybernetics >Event-Driven Guaranteed Cost Control Design for Nonlinear Systems With Actuator Faults via Reinforcement Learning Algorithm
【24h】

Event-Driven Guaranteed Cost Control Design for Nonlinear Systems With Actuator Faults via Reinforcement Learning Algorithm

机译:通过加固学习算法的执行器故障的非线性系统的事件驱动的保证成本控制设计

获取原文
获取原文并翻译 | 示例

摘要

This article presents a novel event-driven guaranteed cost control method for nonlinear systems subject to actuator faults. For the purpose of handling the problem of actuator faults and obtaining the event-driven approximate optimal guaranteed cost control approach for general nonlinear dynamics, the reinforcement learning (RL) algorithm is utilized to develop a sliding-mode control (SMC) strategy. To begin with, the unknown faults can be estimated by designing a fault observer. Meanwhile, an SMC technique is presented aiming at countering the effect of abrupt faults. In addition, the optimal performance of the equivalent sliding mode dynamics is considered, then an event-driven guaranteed cost control mechanism is implemented by using RL principle. In the control process, a general cost function, which has a simpler structure, is given to reduce the computation complexity. At the same time, a modified cost function is approximated to obtain optimal guaranteed cost control by using a single critic neural network (NN). In addition, a modified weight update law for critic NN is presented to relax the persistence of excitation (PE) condition. Moreover, a newly triggering condition, which is easy to be implemented, is designed, and the critic NN update law makes sure that the system states are stable. Furthermore, in light of the Lyapunov analysis, it is demonstrated that the developed event-driven control method guarantees the uniformly ultimately bounded (UUB) property of all the signals. Finally, three simulation results are given to validate the designed control method.
机译:本文提出了一种新的事件驱动的保证性能控制方法,适用于执行器故障的非线性系统。为了处理执行器故障问题并获得一般非线性动力学的事件驱动的近似最佳保证成本控制方法,利用增强学习(RL)算法来开发滑模控制(SMC)策略。首先,可以通过设计故障观察者来估计未知故障。同时,提出了SMC技术,旨在反对突然断层的效果。此外,考虑了等效滑模动态的最佳性能,然后通过使用RL原理来实现事件驱动的保证成本控制机制。在控制过程中,提供了一种具有更简单结构的一般成本函数来降低计算复杂性。同时,通过使用单一批评神经网络(NN)近似修改的成本函数以获得最佳保证成本控制。此外,提出了一种修改的重量更新法,以便放宽激发(PE)条件的持久性。此外,设计了一个易于实施的新触发条件,批评者NN更新法确保系统状态稳定。此外,鉴于Lyapunov分析,表明开发的事件驱动控制方法保证了所有信号的均匀最终的界限(UB)属性。最后,给出了三种仿真结果来验证设计的控制方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号