首页> 外文期刊>IEEE Transactions on Signal Processing >Adaptive set-membership identification in O(m) time for linear-in-parameters models
【24h】

Adaptive set-membership identification in O(m) time for linear-in-parameters models

机译:参数线性模型在O(m)时间内的自适应集合成员身份识别

获取原文
获取原文并翻译 | 示例

摘要

Some fundamental contributions to the theory and applicability of optimal bounding ellipsoid (OBE) algorithms for signal processing are described. All reported OBE algorithms are placed in a general framework that demonstrates the relationship between the set-membership principles and least square error identification. Within this framework, flexible measures for adding explicit adaptation capability are formulated and demonstrated through simulation. Computational complexity analysis of OBE algorithms reveals that they are of O(m/sup 2/) complexity per data sample with m the number of parameters identified. Two very different approaches are described for rendering a specific OBE algorithm, the set-membership weighted recursive least squares algorithm, of O(m) complexity. The first approach involves an algorithmic solution in which a suboptimal test for innovation is employed. The performance is demonstrated through simulation. The second method is an architectural approach in which complexity is reduced through parallel competition.
机译:描述了对最佳边界椭圆体(OBE)算法用于信号处理的理论和适用性的一些基本贡献。所有报告的OBE算法都放在一个通用框架中,该框架演示了集合成员原则与最小平方误差识别之间的关系。在此框架内,制定并通过仿真演示了用于增加显式适应能力的灵活措施。 OBE算法的计算复杂度分析显示,每个数据样本的复杂度为O(m / sup 2 /),具有确定的参数数量。描述了两种非常不同的方法来渲染O(m)复杂度的特定OBE算法(集合成员加权递归最小二乘算法)。第一种方法涉及一种算法解决方案,其中采用了次优测试来进行创新。通过仿真演示了性能。第二种方法是一种架构方法,其中通过并行竞争来降低复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号