首页> 外文期刊>IEEE Transactions on Signal Processing >Stochastic differential equations: an approach to the generation of continuous non-Gaussian processes
【24h】

Stochastic differential equations: an approach to the generation of continuous non-Gaussian processes

机译:随机微分方程:一种生成连续非高斯过程的方法

获取原文
获取原文并翻译 | 示例

摘要

The generation of continuous random processes with jointly specified probability density and covariation functions is considered. The proposed approach is based on the interpretation of the simulated process as a stationary output of a nonlinear dynamic system, excited by white Gaussian noise and described by a system of a first-order stochastic differential equations (SDE). The authors explore how the statistical characteristics of the equation's solution depends on the form of its operator and on the intensity of the input noise. Some aspects of the approximate synthesis of stochastic differential equations and examples of their application to the generation of non-Gaussian continuous processes are considered. The approach should be useful in signal processing when it is necessary to translate the available a priori information on the real random process into the language of its Markov model as well as in simulation of continuous correlated processes with the known probability density function.
机译:考虑生成具有共同指定的概率密度和协方差函数的连续随机过程。所提出的方法是基于将模拟过程解释为非线性动态系统的固定输出,由高斯白噪声激发并由一阶随机微分方程(SDE)系统描述的。作者探讨了方程解的统计特性如何取决于其算子的形式和输入噪声的强度。考虑了随机微分方程近似合成的某些方面,以及在非高斯连续过程生成中的应用实例。当有必要将实际随机过程中的可用先验信息转换成其马尔可夫模型的语言时,以及在用已知概率密度函数进行连续相关过程的仿真中,该方法应在信号处理中有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号