首页> 外文期刊>IEEE Transactions on Signal Processing >Finite-precision error analysis of QRD-RLS and STAR-RLS adaptive filters
【24h】

Finite-precision error analysis of QRD-RLS and STAR-RLS adaptive filters

机译:QRD-RLS和STAR-RLS自适应滤波器的有限精度误差分析

获取原文
获取原文并翻译 | 示例

摘要

The QR decomposition-based recursive least-squares (RLS) adaptive filtering (QRD-RLS) algorithm is suitable for VLSI implementation since it has good numerical properties and can be mapped onto a systolic array. A new fine-grain pipelinable STAR-RLS algorithm was developed. The pipelined STAR-RLS algorithm (PSTAR-RLS) is useful for high-speed applications. The stability of QRD-RLS, STAR-RLS, and PSTAR-RLS has been proved, but the performance of these algorithms in finite-precision arithmetic has not yet been analyzed. The authors determine expressions for the degradation in the performance of these algorithms due to finite precision. By exploiting the steady-state properties of these algorithms, simple expressions are obtained that depend only on known parameters. This analysis can be used to compare the algorithms and to decide the wordlength to be used in an implementation. Since floating- or fixed-point arithmetic representations may be used in practice, both representations are considered. The results show that the three algorithms have about the same finite-precision performance, with PSTAR-RLS performing better than STAR-RLS, which does better than QRD-RLS. These algorithms can be implemented with as few as 8 bits for the fractional part, depending on the filter size and the forgetting factor used. The theoretical expressions are found to be in good agreement with the simulation results.
机译:基于QR分解的递归最小二乘(RLS)自适应滤波(QRD-RLS)算法适用于VLSI实现,因为它具有良好的数值特性并且可以映射到脉动阵列上。开发了一种新的细粒度流水线式STAR-RLS算法。流水线STAR-RLS算法(PSTAR-RLS)对于高速应用很有用。已经证明了QRD-RLS,STAR-RLS和PSTAR-RLS的稳定性,但是尚未分析这些算法在有限精度算法中的性能。作者确定了由于有限精度而导致这些算法性能下降的表达式。通过利用这些算法的稳态特性,可以获得仅依赖于已知参数的简单表达式。该分析可用于比较算法并确定实现中要使用的字长。由于在实践中可以使用浮点或定点算术表示形式,因此将两种表示形式都考虑在内。结果表明,这三种算法具有相同的有限精度性能,PSTAR-RLS的性能优于STAR-RLS,后者的性能优于QRD-RLS。对于这些小数部分,这些算法可以实现为低至8位,具体取决于滤波器的大小和所使用的遗忘因子。理论表达式与仿真结果吻合良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号