首页> 外文期刊>IEEE Transactions on Signal Processing >On the linear minimum-mean-squared-error estimation of an undersampled wide-sense stationary random process
【24h】

On the linear minimum-mean-squared-error estimation of an undersampled wide-sense stationary random process

机译:欠采样的广义平稳随机过程的线性最小均方误差估计

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of linearly estimating, in the sense of minimum-mean-squared error, a wide-sense stationary process in noise given uniformly spaced samples where the sampling interval is such that significant aliasing occurs. We derive the corresponding aliased Wiener filter and provide a technique for determining a closed form for the necessary power spectral density functions. We conclude with an example where both signal and noise are modeled using a second-order innovations representation.
机译:在最小均方误差的意义上,我们考虑线性估计问题,即在给定均匀间隔采样的情况下,噪声的广义平稳过程,其中采样间隔使得发生明显的混叠。我们推导了相应的别名维纳滤波器,并提供了一种确定必要功率谱密度函数的闭合形式的技术。我们以一个使用二阶创新表示对信号和噪声进行建模的示例作为结束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号