首页> 外文期刊>IEEE Transactions on Signal Processing >The Total Variance of a Periodogram-Based Spectral Estimate of a Stochastic Process With Spectral Uncertainty and Its Application to Classifier Design
【24h】

The Total Variance of a Periodogram-Based Spectral Estimate of a Stochastic Process With Spectral Uncertainty and Its Application to Classifier Design

机译:具有谱不确定性的随机过程基于周期图的谱估计的总方差及其在分类器设计中的应用

获取原文
获取原文并翻译 | 示例

摘要

The variance of a spectral estimate of a stochastic process is essential to the formulation and performance of a spectral classifier. The overall variance of a spectral estimate originates from two sources: the within-class spectral uncertainty and the variance introduced in the spectral estimation procedure. In this paper, we derive the total variance of a periodogram-based spectral estimate under some assumptions. Using this result, we formulate a linear spectral classifier based on Fisher's separability metric. The classifier is used to classify two oceanographic processes: ocean convection versus internal waves.
机译:随机过程的频谱估计的方差对于频谱分类器的制定和性能至关重要。频谱估计的总体方差来自两个来源:类内频谱不确定性和频谱估计过程中引入的方差。在本文中,我们在某些假设下得出了基于周期图的频谱估计的总方差。使用此结果,我们基于Fisher的可分离性度量公式制定了线性光谱分类器。分类器用于对两个海洋学过程进行分类:海洋对流与内部波浪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号