首页> 外文学位 >Spectrally-temporally adapted Spectrally Modulated Spectrally Encoded (SMSE) waveform design for coexistent CR-based SDR applications.
【24h】

Spectrally-temporally adapted Spectrally Modulated Spectrally Encoded (SMSE) waveform design for coexistent CR-based SDR applications.

机译:频谱时间适应的频谱调制频谱编码(SMSE)波形设计,用于共存的基于CR的SDR应用。

获取原文
获取原文并翻译 | 示例

摘要

Spectrally Modulated, Spectrally Encoded (SMSE) waveforms have demonstrated considerable practical utility and remain viable alternatives for implementing Cognitive Radio (CR) techniques in Software Defined Radio (SDR) applications. A key benefit of CR-based SDR platforms is their potential for alleviating spectrum scarcity by efficiently exploiting temporal-spectral regions that are under-utilized. When operating under limited bandwidth constraints and amid dissimilarly structured coexisting signals, CR-based SDR signals can be designed such that they "peacefully" coexist while maintaining "manageable" levels of mutual interference in other systems. In this research, the goal is to expand applicability of the SMSE framework by developing a waveform optimization process that enables intelligent waveform design. The resultant waveforms are capable of adapting to a spectrally diverse transmission channel while meeting coexistent constraints.;SMSE waveform design is investigated with respect to two different forms of coexisting signal constraints, including those based on resultant interference levels and those based on resultant power spectrum shape. As is demonstrated, the SMSE framework is well-suited for waveform optimization given its ability to allow independent design of spectral parameters. This utility is greatly enhanced when soft decision selection and dynamic assignment of SMSE design parameters are incorporated. Results show that by exploiting statistical knowledge of primary user (PU) spectral and temporal behavior, the inherent flexibility of the SMSE framework is effectively leveraged such that SMSE throughput (Bits/Sec) is maximized while limiting mutual coexistent interference to manageable levels. This process is accomplished using independent selection of subcarrier modulation order and power allocation. Additional gains are achieved by accounting for the temporal behavior of coexistent signals, thereby allowing the SMSE system to statistically predict optimal waveform designs. Results demonstrate an approximate 20% increase in throughput is achieved by employing a Reactive Spectrally-Temporally adapted waveform design relative to a Spectrally-Only adapted design, with an additional 10% increase in throughput realized using a Predictive Spectrally-Temporally adapted design.;SMSE system capability is extended further using uniform spectral partitioning with carrier-interferometry (CI) coding to increase SMSE waveform agility. By adaptively varying the modulation order and optimally allocating power within each spectral partition, inherent SMSE flexibility is more fully exploited and SMSE throughput substantially increases in the presence of spectral mask constraints. Results demonstrate up to a 36% increase in throughput is achieved by employing spectral partitioning, with up to 110% improvement achieved by employing spectral partitioning in conjunction with a Predictive Spectrally-Temporally adapted waveform design.
机译:频谱调制,频谱编码(SMSE)波形已显示出相当大的实用性,并且仍然是在软件定义无线电(SDR)应用程序中实现认知无线电(CR)技术的可行替代方案。基于CR的SDR平台的主要优势在于,它们可以通过有效利用未充分利用的时光谱区域来缓解频谱短缺的潜力。当在有限的带宽限制下以及在结构互不相同的共存信号中工作时,可以设计基于CR的SDR信号,使其“和平地”共存,同时在其他系统中保持“可管理”的相互干扰水平。在本研究中,目标是通过开发实现智能波形设计的波形优化过程来扩展SMSE框架的适用性。结果波形能够适应频谱多样化的传输通道,同时满足共存的约束条件。针对两种共存信号约束的不同形式,研究了SMSE波形设计,包括基于结果干扰电平的共存信号和基于结果功率谱形状的共存信号约束。如图所示,SMSE框架允许独立设计频谱参数,因此非常适合于波形优化。当合并了软决策和SMSE设计参数的动态分配时,此实用程序将大大增强。结果表明,通过利用主要用户(PU)频谱和时间行为的统计知识,可以有效地利用SMSE框架的固有灵活性,以使SMSE吞吐量(比特/秒)最大化,同时将相互共存的干扰限制在可管理的水平。该过程是通过独立选择子载波调制阶数和功率分配来完成的。通过考虑共存信号的时间行为,可以获得额外的收益,从而使SMSE系统能够统计地预测最佳波形设计。结果表明,相对于仅采用频谱自适应的设计,采用无功频谱临时适应的波形设计可实现约20%的吞吐量提高,而使用预测频谱临时适应的设计可实现额外的10%的吞吐量增长。系统功能通过使用带有载波干涉术(CI)编码的均匀频谱划分来进一步扩展,以提高SMSE波形的敏捷性。通过自适应地改变调制顺序并在每个频谱分区内最佳地分配功率,可以更充分地利用固有的SMSE灵活性,并且在存在频谱模板约束的情况下SMSE吞吐量会大大提高。结果表明,通过采用频谱划分可以将吞吐量提高多达36%,而通过将频谱划分与预测频谱-临时适应的波形设计结合使用,则可以将吞吐量提高多达110%。

著录项

  • 作者

    Like, Eric C.;

  • 作者单位

    Air Force Institute of Technology.;

  • 授予单位 Air Force Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号