首页> 外文期刊>IEEE Transactions on Signal Processing >Exploitation of Source Nonstationarity in Underdetermined Blind Source Separation With Advanced Clustering Techniques
【24h】

Exploitation of Source Nonstationarity in Underdetermined Blind Source Separation With Advanced Clustering Techniques

机译:欠聚类技术在欠定盲源分离中的源非平稳性开发

获取原文
获取原文并翻译 | 示例

摘要

The problem of blind source separation (BSS) is investigated. Following the assumption that the time-frequency (TF) distributions of the input sources do not overlap, quadratic TF representation is used to exploit the sparsity of the statistically nonstationary sources. However, separation performance is shown to be limited by the selection of a certain threshold in classifying the eigenvectors of the TF matrices drawn from the observation mixtures. Two methods are, therefore, proposed based on recently introduced advanced clustering techniques, namely Gap statistics and self-splitting competitive learning (SSCL), to mitigate the problem of eigenvector classification. The novel integration of these two approaches successfully overcomes the problem of artificial sources induced by insufficient knowledge of the threshold and enables automatic determination of the number of active sources over the observation. The separation performance is thereby greatly improved. Practical consequences of violating the TF orthogonality assumption in the current approach are also studied, which motivates the proposal of a new solution robust to violation of orthogonality. In this new method, the TF plane is partitioned into appropriate blocks and source separation is thereby carried out in a block-by-block manner. Numerical experiments with linear chirp signals and Gaussian minimum shift keying (GMSK) signals are included which support the improved performance of the proposed approaches.
机译:研究了盲源分离(BSS)问题。假设输入源的时频(TF)分布不重叠,则使用二次TF表示来利用统计上不稳定的源的稀疏性。但是,在对从观察混合物中提取的TF矩阵的特征向量进行分类时,通过选择某个阈值限制了分离性能。因此,基于最近引入的高级聚类技术,提出了两种方法,即间隙统计和自分裂竞争学习(SSCL),以减轻特征向量分类的问题。这两种方法的新颖集成成功地克服了由于阈值知识不足而导致的人工来源问题,并使得能够根据观察结果自动确定活动来源的数量。分离性能由此大大提高。还研究了在当前方法中违反TF正交性假设的实际后果,这激发了提出一种对正交性鲁棒性强的新解决方案的建议。在这种新方法中,将TF平面划分为适当的块,从而以块为单位进行源分离。包括线性chi声信号和高斯最小频移键控(GMSK)信号的数值实验,这些实验支持所提出方法的改进性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号