首页> 外文期刊>IEEE Transactions on Signal Processing >An Asymptotically Unbiased Estimator for Bearings-Only and Doppler-Bearing Target Motion Analysis
【24h】

An Asymptotically Unbiased Estimator for Bearings-Only and Doppler-Bearing Target Motion Analysis

机译:纯方位和多普勒轴承目标运动分析的渐近无偏估计

获取原文
获取原文并翻译 | 示例

摘要

Bearings-only (BO) and Doppler-bearing (DB) target motion analysis (TMA) attempt to obtain a target trajectory based on bearings and on Doppler and bearing measurements, respectively, from an observer to the target. The BO-TMA and DB-TMA problems are nontrivial because the measurement equations are nonlinearly related to the target location parameters. The pseudolinear formulation provides a linear estimator solution, but the resulting location estimate is biased. The instrumental variable method and the numerical maximum likelihood approach can eliminate the bias. Their convergence behavior, however, is not easy to control. This paper proposes an asymptotically unbiased estimator of the tracking problem. The proposed method applies least squares minimization on the pseudolinear equations with a quadratic constraint on the unknown parameters. The resulting estimator is shown to be solving the generalized eigenvalue problem. The proposed solution does not require initial guesses and does not have convergence problems. Sequential forms of the proposed algorithms for both BO-TMA and DB-TMA are derived. The sequential algorithms improve the estimation accuracy as a new measurement arrives and do not require generalized eigenvalue decomposition for solution update. The proposed estimator achieves the Cramer-Rao Lower Bound (CRLB) asymptotically for Gaussian noise before the thresholding effect occurs.
机译:纯方位目标(BO)和多普勒方位(DB)目标运动分析(TMA)试图分别从观测者到目标分别基于方位,多普勒和方位测量来获取目标轨迹。 BO-TMA和DB-TMA问题并不简单,因为测量方程与目标位置参数非线性相关。伪线性公式提供了线性估计器解决方案,但是所得到的位置估计是有偏差的。工具变量法和数值最大似然法可以消除偏差。但是,它们的收敛行为并不容易控制。本文提出了一种跟踪问题的渐近无偏估计。所提出的方法对具有未知参数二次约束的伪线性方程组应用最小二乘最小化。结果表明,估计器正在解决广义特征值问题。提出的解决方案不需要初步猜测,也没有收敛问题。推导了针对BO-TMA和DB-TMA提出的算法的顺序形式。随着新测量的到来,顺序算法提高了估计精度,并且不需要广义特征值分解来求解更新。所提出的估计器在阈值效应发生之前,渐近地实现了高斯噪声的Cramer-Rao下界(CRLB)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号