首页> 外文期刊>Signal processing >On the efficiency of a bearings-only instrumental variable estimator for target motion analysis
【24h】

On the efficiency of a bearings-only instrumental variable estimator for target motion analysis

机译:关于仅轴承的工具变量估计器用于目标运动分析的效率

获取原文
获取原文并翻译 | 示例

摘要

The maximum-likelihood (ML) estimator for bearings-only target motion analysis does not admit a closed-from solution and must be implemented iteratively. Iterative ML estimators require an initialization close to the true solution to avoid divergence. Recently a closed-form asymptotically unbiased instrumental variable estimator has been proposed to alleviate the convergence problems associated with iterative ML estimators. This paper establishes the asymptotic efficiency of the closed-form instrumental variable estimator by showing that its error covariance matrix approaches the Cramer-Rao lower bound for sufficiently small bearing noise as the number of measurements tends to infinity.
机译:仅用于轴承目标运动分析的最大似然(ML)估算器不允许采用封闭式解决方案,必须迭代实现。迭代式ML估计器需要接近真实解的初始化以避免差异。最近,已经提出了一种封闭形式的渐近无偏工具变量估计器,以减轻与迭代ML估计器相关的收敛问题。本文通过显示闭合误差形式的工具变量估计器的误差协方差矩阵接近Cramer-Rao下界(对于足够小的轴承噪声,因为测量次数趋于无穷大),从而建立了渐近效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号