首页> 外文期刊>IEEE Transactions on Signal Processing >Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter
【24h】

Analytic Implementations of the Cardinalized Probability Hypothesis Density Filter

机译:基数化的概率假设密度滤波器的解析实现

获取原文
获取原文并翻译 | 示例

摘要

The probability hypothesis density (PHD) recursion propagates the posterior intensity of the random finite set (RFS) of targets in time. The cardinalized PHD (CPHD) recursion is a generalization of the PHD recursion, which jointly propagates the posterior intensity and the posterior cardinality distribution. In general, the CPHD recursion is computationally intractable. This paper proposes a closed-form solution to the CPHD recursion under linear Gaussian assumptions on the target dynamics and birth process. Based on this solution, an effective multitarget tracking algorithm is developed. Extensions of the proposed closed-form recursion to accommodate nonlinear models are also given using linearization and unscented transform techniques. The proposed CPHD implementations not only sidestep the need to perform data association found in traditional methods, but also dramatically improve the accuracy of individual state estimates as well as the variance of the estimated number of targets when compared to the standard PHD filter. Our implementations only have a cubic complexity, but simulations suggest favorable performance compared to the standard Joint Probabilistic Data Association (JPDA) filter which has a nonpolynomial complexity.
机译:概率假设密度(PHD)递归在时间上传播目标的随机有限集(RFS)的后强度。基数化PHD(CPHD)递归是PHD递归的概括,它共同传播后强度和后基数分布。通常,CPHD递归在计算上是棘手的。本文针对目标动力学和出生过程,在线性高斯假设下提出了CPHD递归的封闭形式解决方案。基于该解决方案,开发了一种有效的多目标跟踪算法。还使用线性化和无味变换技术给出了建议的封闭形式递归的扩展,以适应非线性模型。与标准PHD滤波器相比,提出的CPHD实现不仅避免了执行传统方法中发现的数据关联的需要,而且还大大提高了各个状态估计的准确性以及目标估计数量的方差。我们的实现仅具有三次复杂度,但是与具有非多项式复杂度的标准联合概率数据协会(JPDA)过滤器相比,仿真显示了良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号