首页> 外文OA文献 >Box-Particle Implementation and Comparison of Cardinalized Probability Hypothesis Density Filter
【2h】

Box-Particle Implementation and Comparison of Cardinalized Probability Hypothesis Density Filter

机译:框式实现和基数化概率假设密度过滤器的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper develops a box-particle implementation of cardinalized probability hypothesis density filter to track multiple targets and estimate the unknown number of targets. A box particle is a random sample that occupies a small and controllable rectangular region of nonzero volume in the target state space. In box-particle filter the huge number of traditional point observations is instead by a remarkably reduced number of interval measurements. It decreases the number of particles significantly and reduces the runtime considerably. The proposed algorithm based on box-particle is able to reach a similar accuracy to a Sequential Monte Carlo cardinalized probability hypothesis density (SMC-CPHD) filter with much less computational costs. Not only does it propagates the PHD, but also propagates the cardinality distribution of target number. Therefore, it generates more accurate and stable instantaneous estimates of target number as well as target state than the box-particle probability hypothesis density (BP-PHD) filter does especially in dense clutter environment. Comparison and analysis based on the simulations in different probability of detection and different clutter rate have been done. The effectiveness and reliability of the proposed algorithm are verified by the simulation results.
机译:本文开发了基数化概率假设密度过滤器的盒式粒子实现,以跟踪多个目标并估计未知数目的目标。盒子粒子是一种随机样本,在目标状态空间中占据一个很小且可控制的非零体积矩形区域。在箱式粒子滤波器中,大量的传统点观测值却被大量减少的间隔测量值所代替。它显着减少了粒子数量,并大大减少了运行时间。所提出的基于盒粒子的算法能够以更少的计算成本达到与顺序蒙特卡洛基数化概率假设密度(SMC-CPHD)滤波器相似的精度。它不仅传播PHD,而且传播目标号码的基数分布。因此,它比盒粒子概率假设密度(BP-PHD)滤波器产生的目标数量以及目标状态的瞬时估计值更加准确和稳定,尤其是在密集的杂波环境中。在不同的检测概率和不同的杂波率下,基于仿真进行了比较和分析。仿真结果验证了所提算法的有效性和可靠性。

著录项

  • 作者

    Song L.; Liang M.; Ji H.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号