首页> 外文期刊>Signal processing >Unified cardinalized probability hypothesis density filters for extended targets and unresolved targets
【24h】

Unified cardinalized probability hypothesis density filters for extended targets and unresolved targets

机译:针对扩展目标和未解决目标的统一基数化概率假设密度过滤器

获取原文
获取原文并翻译 | 示例

摘要

The unified cardinalized probability hypothesis density (CPHD) filters for extended targets and unresolved targets are proposed. The theoretically rigorous measurement update equations for the proposed filters are derived according to the theory of random finite set (RFS) and finite-set statistics (FISST). By assuming that the predicted distributions of the extended targets and unresolved targets and the distribution of the clutter are Poisson, the exact extended-target and unresolved-target CPHD correc tors reduce to the exact extended-target and unresolved-target PHD correctors, respectively. Since the exact CPHD and PHD corrector equations involve with a number of operations that grow exponentially with the number of measurements, the computationally tractable approximations for them are presented, which can be used when the extended targets and the unresolved targets are not too close together and the clutter density is not too large. Monte Carlo simulation results show that the approximate extended-target and unresolved-target CPHD filters, respectively, outper form the approximate extended-target and unresolved-target PHD filters a lot in estimating the target number and states, although the computational requirement of the CPHD filters is more expensive than that of the PHD filters.
机译:提出了针对扩展目标和未解决目标的统一基数概率假设密度(CPHD)过滤器。根据随机有限集(RFS)和有限集统计量(FISST)的理论推导了所提出的滤波器的理论上严格的测量更新方程。通过假设扩展目标和未解决目标的预测分布以及杂波的分布是泊松分布,精确的扩展目标和未解决目标的CPHD校正子分别减少为精确的扩展目标和未解决目标的PHD校正器。由于精确的CPHD和PHD校正器方程涉及到随测量数量成指数增长的大量运算,因此提出了它们的可计算上易处理的近似值,当扩展目标和未解决目标之间的距离不太接近时,可以使用这些近似值。杂波密度不会太大。蒙特卡罗仿真结果表明,尽管CPHD的计算要求很高,但在估计目标数量和状态时,近似的扩展目标CPHD过滤器和未解决的目标CPHD过滤器分别比近似扩展目标PHD过滤器和未解决目标的PHD过滤器要好得多。过滤器比PHD过滤器昂贵。

著录项

  • 来源
    《Signal processing》 |2012年第7期|p.1729-1744|共16页
  • 作者单位

    SKLMSE Lab., MOE KLINNS Lab., School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an. Shannxi 710049, People's Republic of China;

    SKLMSE Lab., MOE KLINNS Lab., School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an. Shannxi 710049, People's Republic of China;

    School of Automation, Hangzhou Dianzi University, Hang Zhou, Zhejiang 310018, People's Republic of China;

    SKLMSE Lab., MOE KLINNS Lab., School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an. Shannxi 710049, People's Republic of China;

    Institute for Information and System Sciences, School of Science, Xi'an Jiaotong University, Xi'an, Shannxi 710049, People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    extended-target tracking (ETT); unresolved-target tracking (UTT); probability hypothesis density (PHD) filter; cardinalized PHD (CPHD) filter; random finite set (RFS); finite-set statistics (FISST);

    机译:扩展目标跟踪(ETT);未解决的目标跟踪(UTT);概率假设密度(PHD)过滤器;基数化PHD(CPHD)过滤器;随机有限集(RFS);有限集统计(FISST);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号