首页> 外文会议>Signal and Data Processing of Small Targets 2006 >A Physical-Space Approach for the Probability Hypothesis Density and Cardinalized Probability Hypothesis Density Filters
【24h】

A Physical-Space Approach for the Probability Hypothesis Density and Cardinalized Probability Hypothesis Density Filters

机译:概率假设密度和基数化的概率假设密度过滤器的物理空间方法

获取原文
获取原文并翻译 | 示例

摘要

The probability hypothesis density (PHD) filter, an automatically track-managed multi-target tracker, is attracting increasing but cautious attention. Its derivation is elegant and mathematical, and thus of course many engineers fear it; perhaps that is currently limiting the number of researchers working on the subject. In this paper, we explore a physical-space approach - a bin model - which leads us to arrive the same filter equations as the PHD. Unlike the original derivation of the PHD filter, the concepts used are the familiar ones of conditional probability. The original PHD suffers from a "target-death" problem in which even a single missed detection can lead to the apparent disappearance of a target. To obviate this, PHD originator Mahler has recently developed a new "cardinalized" version of PHD (CPHD). We are able to extend our physical-space derivation to the CPHD case as well. We stress that the original derivations are mathematically correct, and need no embellishment from us; our contribution here is to offer an alternative derivation, one that we find appealing.
机译:概率假设密度(PHD)过滤器是一种自动跟踪管理的多目标跟踪器,正在引起越来越多的关注,但要谨慎。它的推导是优雅的和数学的,因此许多工程师当然会担心它。也许目前这限制了从事该主题研究的人员数量。在本文中,我们探索了一种物理空间方法-bin模型-使我们得到与PHD相同的滤波器方程。与PHD滤波器的原始推导不同,所使用的概念是条件概率的熟悉概念。原始的PHD遭受“目标死亡”问题的困扰,在该问题中,即使是一次错过的检测也会导致目标的明显消失。为了避免这种情况,PHD发起者Mahler最近开发了PHD(CPHD)的新“基数化”版本。我们也可以将物理空间推导扩展到CPHD情况。我们强调,原始推导在数学上是正确的,不需要我们修饰。我们在这里的贡献是提供了另一种派生方式,我们认为它很有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号