首页> 外文期刊>IEEE Transactions on Signal Processing >Investigation and Performance Enhancement of the Empirical Mode Decomposition Method Based on a Heuristic Search Optimization Approach
【24h】

Investigation and Performance Enhancement of the Empirical Mode Decomposition Method Based on a Heuristic Search Optimization Approach

机译:基于启发式搜索优化方法的经验模式分解方法的研究与性能增强

获取原文
获取原文并翻译 | 示例

摘要

Empirical mode decomposition (EMD) is a relatively new, data-driven adaptive technique for analyzing multicomponent signals. Although it has many interesting features and often exhibits an ability to decompose nonlinear and nonstationary signals, it lacks a strong theoretical basis which would allow a performance analysis and hence the enhancement and optimization of the method in a systematic way. In this paper, the optimization of EMD is attempted in an alternative manner. Using specially defined multicomponent signals, the optimum outputs can be known in advance and used in the optimization of the EMD-free parameters within a genetic algorithm framework. The contributions of this paper are two-fold. First, the optimization of both the interpolation points and the piecewise interpolating polynomials for the formation of the upper and lower envelopes of the signal reveal important characteristics of the method which where previously hidden. Second, basic directions for the estimates of the optimized parameters are developed, leading to significant performance improvements.
机译:经验模态分解(EMD)是一种相对较新的,数据驱动的自适应技术,用于分析多分量信号。尽管它具有许多有趣的功能并且经常表现出分解非线性和非平稳信号的能力,但是它缺乏强大的理论基础,无法进行性能分析,因此可以系统地增强和优化该方法。在本文中,以另一种方式尝试了EMD的优化。使用特别定义的多分量信号,可以预先知道最佳输出,并将其用于优化遗传算法框架内无EMD的参数。本文的贡献有两个方面。首先,对内插点和分段内插多项式的优化,以形成信号的上,下包络线,从而揭示了该方法的重要特征,这些特征以前就被隐藏了。其次,开发了用于估计优化参数的基本方向,从而导致了显着的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号