首页> 外文期刊>Signal Processing, IEEE Transactions on >Improved Probabilistic Multi-Hypothesis Tracker for Multiple Target Tracking With Switching Attribute States
【24h】

Improved Probabilistic Multi-Hypothesis Tracker for Multiple Target Tracking With Switching Attribute States

机译:具有切换属性状态的多目标跟踪的改进概率多假设跟踪器

获取原文
获取原文并翻译 | 示例

摘要

The probabilistic multi-hypothesis tracker (PMHT) is an effective multiple target tracking (MTT) method based on the expectation maximization (EM) algorithm. The PMHT only uses the kinematic information to solve the problem of measurement to target association. However, in some applications, other information such as attribute measurements of targets may be available, which has potential to reduce misassociations and improve the tracking performance. Integrating attributes into the PMHT may suffer from the switch of attribute states and the instability of attribute measurements. In this paper, an attribute-aided association structure for the PMHT is proposed to consider the uncertainty in both attribute states and attribute measurements. The attribute characteristics are described by the hidden Markov model (HMM), and the joint probabilistic model of kinematic and attribute properties is derived. The attribute states are estimated by the Viterbi algorithm and the data association is improved by the extracted attribute information. Simulation results show that the proposed algorithm has better performance when the attributes of targets are available.
机译:概率多假设跟踪器(PMHT)是基于期望最大化(EM)算法的有效多目标跟踪(MTT)方法。 PMHT仅使用运动学信息来解决与目标关联的测量问题。但是,在某些应用程序中,可能会使用其他信息(例如目标的属性测量),这可能会减少误关联并提高跟踪性能。将属性集成到PMHT中可能会遭受属性状态的切换和属性测量的不稳定。在本文中,为考虑属性状态和属性测量中的不确定性,提出了一种PMHT的属性辅助关联结构。通过隐马尔可夫模型(HMM)描述属性特征,并推导出运动学属性和属性属性的联合概率模型。通过维特比算法估计属性状态,并通过提取的属性信息改善数据关联。仿真结果表明,该算法在目标属性有效的情况下具有较好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号