首页> 外文期刊>Signal Processing, IEEE Transactions on >Robust Localization of Nodes and Time-Recursive Tracking in Sensor Networks Using Noisy Range Measurements
【24h】

Robust Localization of Nodes and Time-Recursive Tracking in Sensor Networks Using Noisy Range Measurements

机译:使用噪声范围测量的传感器网络中节点的稳健定位和时间递归跟踪

获取原文
获取原文并翻译 | 示例

摘要

Simultaneous localization and tracking (SLAT) in sensor networks aims to determine the positions of sensor nodes and a moving target in a network, given incomplete and inaccurate range measurements between the target and each of the sensors. One of the established methods for achieving this is to iteratively maximize a likelihood function (ML) of positions given the observed ranges, which requires initialization with an approximate solution to avoid convergence towards local extrema. This paper develops methods for handling both Gaussian and Laplacian noise, the latter modeling the presence of outliers in some practical ranging systems that adversely affect the performance of localization algorithms designed for Gaussian noise. A modified Euclidean distance matrix (EDM) completion problem is solved for a block of target range measurements to approximately set up initial sensor/target positions, and the likelihood function is then iteratively refined through majorization-minimization (MM). To avoid the computational burden of repeatedly solving increasingly large EDM problems in time-recursive operation, an incremental scheme is exploited whereby a new targetode position is estimated from previously available node/target locations to set up the iterative ML initial point for the full spatial configuration. The above methods are first derived under Gaussian noise assumptions, and modifications for Laplacian noise are then considered. Analytically, the main challenges to overcome in the Laplacian case stem from the non-differentiability of $ell_1$ norms that arise in the various cost functions. Simulation results show that the proposed algorithms significantly outperform existing localization methods in the presence of outliers, while providing comparable performance for Gaussian noise.
机译:传感器网络中的同时定位和跟踪(SLAT)旨在确定网络中传感器节点和移动目标的位置,前提是目标与每个传感器之间的距离测量不完整且不准确。为达到此目的,已建立的方法之一是在给定观察范围的情况下迭代最大化位置的似然函数(ML),这需要使用近似解进行初始化以避免收敛到局部极值。本文开发了处理高斯噪声和拉普拉斯噪声的方法,后者对某些实际测距系统中异常值的存在进行建模,这些异常值会不利地影响为高斯噪声设计的定位算法的性能。解决了一个改进的欧几里德距离矩阵(EDM)完成问题,以对目标范围测量块进行近似设置初始传感器/目标位置的情况,然后通过主化最小化(MM)迭代完善似然函数。为了避免在时间递归操作中反复解决越来越大的EDM问题所带来的计算负担,采用了一种增量方案,据此,可以从先前可用的节点/目标位置中估算出一个新的目标/节点位置,从而为整个过程建立迭代ML初始点。空间配置。首先在高斯噪声假设下推导以上方法,然后考虑对拉普拉斯噪声的修改。从分析上讲,在Laplacian案例中要克服的主要挑战来自 $ ell_1 $ 规范的不可微性。各种成本函数。仿真结果表明,所提出的算法在存在离群值的情况下明显优于现有的定位方法,同时为高斯噪声提供了可比的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号