首页> 外文期刊>Neural processing letters >Localization Approach for Tracking the Mobile Nodes Using FA Based ANN in Subterranean Wireless Sensor Networks
【24h】

Localization Approach for Tracking the Mobile Nodes Using FA Based ANN in Subterranean Wireless Sensor Networks

机译:在地下无线传感器网络中使用FA基于ANN跟踪移动节点的本地化方法

获取原文
获取原文并翻译 | 示例

摘要

Localization is an essential approach in the branch of wireless sensor networks that have been introduced crucial research interest in academic circles and research association. Main aim is to create the localization scheme to enhance the localization accuracy. With the aim is to support long battery life for network devices with low rate, low power consumption and minimum resource requirements. The ZigBee network formation is carried out in the proposed model. The position of the mobile node is evaluated depend upon received signal strength indicator by means of firefly algorithm based artificial neural network (FA-ANN) technique. RSSI data for mobile points are calculated in advance and they maintained in fingerprint database. The finding phase size and principal component analysis is calculated for reducing the size of RSSI fingerprints. The affinity propagation clustering technique is affiliated to decrease the higher position error and improve the effectiveness of the location prediction. The proposed trained FA neural network is based on the clustered RSSI value for accurate localization. Finally, trained FA based neural network is utilized to find the accurate position of the mobile node with minimal consumption of mobile node energy. Thus the hybrid approach, the localization error is reduced and node prediction is achieved in a faster rate. The implementation output of the presented system shows that can be provide localization accuracy of 95% and significantly improves the prediction speed in terms of minimum location time.
机译:本地化是无线传感器网络分支的必要方法,已经为学术界和研究协会引入了重要的研究兴趣。主要目标是创建本地化方案,以提高本地化精度。目的是支持具有低速率,低功耗和最低资源要求的网络设备的长电池寿命。 ZigBee网络形成在提出的模型中进行。通过基于萤火虫算法的人工神经网络(FA-ANN)技术,评估移动节点的位置取决于接收的信号强度指示器。用于移动点的RSSI数据预先计算,并在指纹数据库中维护。计算查找阶段大小和主成分分析以减少RSSI指纹的大小。亲和传播聚类技术被关联以降低更高的位置误差并提高位置预测的有效性。建议的训练有素的FA神经网络基于聚簇RSSI值以准确定位。最后,利用训练的FA基于的神经网络来找到移动节点的准确位置,具有最小的移动节点能量消耗。因此,混合方法,降低了本地化误差,并且以更快的速率实现节点预测。所提出的系统的实现输出显示,可以提供95%的定位精度,并在最小位置时间方面显着提高预测速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号