首页> 外文期刊>Signal Processing, IEEE Transactions on >Distributed Incremental-Based LMS for Node-Specific Adaptive Parameter Estimation
【24h】

Distributed Incremental-Based LMS for Node-Specific Adaptive Parameter Estimation

机译:基于分布式增量式LMS的节点特定自适应参数估计

获取原文
获取原文并翻译 | 示例

摘要

We introduce an adaptive distributed technique that is suitable for parameter estimation in a network where nodes have different but overlapping interests. At each node, the parameters to be estimated can be of local interest, global interest to the whole network and common interest to a subset of nodes. To estimate each set of local, common and global parameters, a least mean squares (LMS) algorithm is implemented under an incremental mode of cooperation. Coupled with the estimation of the different sets of parameters, the implementation of each LMS algorithm is only undertaken by the nodes of the network interested in a specific set of local, common or global parameters. Besides obtaining the conditions under which the proposed strategy converges in the mean to the solution of a centralized unit that processes all the observations, a spatial-temporal energy conservation relation is provided to evaluate the steady-state performance at each node across the network. Finally, the theoretical results are validated through generic computer simulations as well as simulation results in the context of cooperative spectrum sensing in cognitive radio networks.
机译:我们介绍了一种自适应分布式技术,适用于节点具有不同但重叠的利益的网络中的参数估计。在每个节点上,要估计的参数可能是本地关注的,整个网络是全局的,节点的子集是公共的。为了估计每组局部,公共和全局参数,在协作的增量模式下实施了最小均方(LMS)算法。结合对不同参数集的估计,每种LMS算法的实现仅由对本地,公共或全局参数的特定集合感兴趣的网络节点来执行。除了获得所提出的策略在某种程度上收敛到处理所有观测值的集中式单元的解决方案的条件之外,还提供了时空节能关系来评估网络中每个节点的稳态性能。最后,通过通用计算机仿真以及认知无线电网络中协作频谱感知的仿真结果验证了理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号