首页> 外文期刊>Signal Processing, IEEE Transactions on >Distributed Diffusion-Based LMS for Node-Specific Adaptive Parameter Estimation
【24h】

Distributed Diffusion-Based LMS for Node-Specific Adaptive Parameter Estimation

机译:基于分布式扩散的LMS用于节点特定的自适应参数估计

获取原文
获取原文并翻译 | 示例

摘要

A distributed adaptive algorithm is proposed to solve a node-specific parameter estimation problem where the nodes are interested in estimating parameters that can be of local interest, common interest to a subset of nodes and global interest to the whole network. To address the different node-specific parameter estimation problems, this novel algorithm relies on a diffusion-based implementation of different, yet coupled Least Mean Squares (LMS) algorithms, each associated with the estimation of a specific set of local, common or global parameters. The study of convergence in the mean sense reveals that the proposed algorithm is asymptotically unbiased. Moreover, a spatial-temporal energy conservation relation is provided to evaluate the steady-state performance at each node in the mean-square sense. Finally, the theoretical results and the effectiveness of the proposed technique are validated through computer simulations in the context of cooperative spectrum sensing in Cognitive Radio networks.
机译:提出了一种分布式自适应算法来解决特定于节点的参数估计问题,其中节点对估计可能感兴趣的参数感兴趣,这些参数可能是局部兴趣,节点子集的共同兴趣以及整个网络的整体兴趣。为了解决不同的特定于节点的参数估计问题,该新颖算法依赖于不同但耦合的最小均方(LMS)算法的基于扩散的实现,每个算法均与一组特定的局部,公共或全局参数的估计相关联。在均值意义上的收敛性研究表明,该算法是渐近无偏的。此外,提供了时空能量守恒关系来评估均方意义上每个节点的稳态性能。最后,在认知无线电网络中的协作频谱感知环境下,通过计算机仿真验证了所提出技术的理论结果和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号