首页> 外文期刊>Signal processing >Distributed adaptive node-specific signal estimation in a wireless sensor network with noisy links
【24h】

Distributed adaptive node-specific signal estimation in a wireless sensor network with noisy links

机译:带有噪声链路的无线传感器网络中的分布式自适应节点特定信号估计

获取原文
获取原文并翻译 | 示例

摘要

We consider a distributed signal estimation problem in a wireless sensor network where each node aims to estimate a node-specific desired signal using all sensor signals available in the network. In this setting, the distributed adaptive node-specific signal estimation (DANSE) algorithm is able to learn optimal fusion rules with which the nodes fuse their sensor signals, as the fused signals are then transmitted between the nodes. Under the assumption of transmission without errors, DANSE achieves the performance of centralized estimation. However, noisy communication links introduce errors in these transmitted signals, e.g., due to quantization or communication errors. In this paper we show fusion rules which take additive noise in the transmitted signals into account at almost no increase in computational complexity, resulting in a new algorithm denoted as 'noisy-DANSE' (N-DANSE). As the convergence proof for DANSE cannot be straightforwardly generalized to the case with noisy links, we use a different strategy to prove convergence of N-DANSE, which also proves convergence of DANSE without noisy links as a special case. We validate the convergence of N-DANSE and compare its performance with the original DANSE through numerical simulations, which demonstrate the superiority of N-DANSE over the original DANSE in noisy links scenarios. (C) 2019 Elsevier B.V. All rights reserved.
机译:我们考虑无线传感器网络中的分布式信号估计问题,其中每个节点旨在使用网络中所有可用的传感器信号来估计特定于节点的所需信号。在这种设置下,分布式自适应特定于节点的信号估计(DANSE)算法能够学习最佳融合规则,节点将其传感器信号融合在一起,然后在节点之间传输融合信号。在传输没有错误的假设下,DANSE实现了集中估计的性能。然而,例如由于量化或通信错误,嘈杂的通信链路在这些传输的信号中引入了错误。在本文中,我们展示了融合规则,该融合规则在几乎不增加计算复杂度的情况下将发射信号中的加性噪声​​考虑在内,从而产生了一种称为“嘈杂-DANSE”(N-DANSE)的新算法。由于不能简单地将DANSE的收敛性证明推广到有噪声链接的情况,因此我们使用不同的策略来证明N-DANSE的收敛性,这也证明了无噪声链接的DANSE的收敛性是特例。我们验证了N-DANSE的收敛性,并通过数值模拟将其性能与原始DANSE进行了比较,这证明了N-DANSE在嘈杂链接场景中优于原始DANSE的优越性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号