首页> 外文期刊>IEEE Transactions on Signal Processing >The Sample Complexity of Weighted Sparse Approximation
【24h】

The Sample Complexity of Weighted Sparse Approximation

机译:加权<?Pub _newline?>稀疏近似的样本复杂度

获取原文
获取原文并翻译 | 示例

摘要

For Gaussian sampling matrices, we provide bounds on the minimal number of measurements required to achieve robust weighted sparse recovery guarantees in terms of how well a given prior model for the sparsity support aligns with the true underlying support. Our main contribution is that for a sparse vector supported on an unknown set with , if has weighted cardinality , and if the weights on exhibit mild growth, for and , then the sample complexity for sparse recovery via weighted -minimization using weights is linear in the weighted sparsity level, and . This main result is a generalization of special cases including a) the standard sparse recovery setting where all weights , and ; b) the setting where the support is known a priori, and ; and c) the setting of sparse recovery with prior information, and depends on how well the weights are aligned with the support set . We further extend the results in case c) to the setting of additive noise. Our results are nonuniform that is they apply for a fixed support, unknown a priori, and the weights on do not all have to be smaller than the weights on for our recovery results to hold.
机译:对于高斯采样矩阵,我们根据稀疏支持的给定现有模型与真实基础支持的匹配程度,为实现鲁棒的加权稀疏恢复保证所需的最小测量次数提供了界限。我们的主要贡献在于,对于具有的未知集合上支持的稀疏向量,如果具有加权基数,并且如果和上的权重表现出温和增长,则通过加权最小化使用权重进行稀疏恢复的样本复杂度在加权稀疏度,以及。主要结果是对特殊情况的概括,包括:a)所有权重均满足的标准稀疏恢复设置;以及b)先验已知支持的设置;以及c)稀疏恢复的先验信息设置,并且取决于权重与支持集对齐的程度。我们将情况c)的结果进一步扩展到附加噪声的设置。我们的结果不一致,因为它们适用于固定的支持,先验未知,并且权重并不一定都小于要保持我们的恢复结果所要权重。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号