首页> 外文期刊>IEEE Transactions on Signal Processing >Recursive Sparse Point Process Regression With Application to Spectrotemporal Receptive Field Plasticity Analysis
【24h】

Recursive Sparse Point Process Regression With Application to Spectrotemporal Receptive Field Plasticity Analysis

机译:递归稀疏点过程回归及其在光谱时域接受中的应用

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of estimating the sparse time-varying parameter vectors of a point process model in an online fashion, where the observations and inputs respectively consist of binary and continuous time series. We construct a novel objective function by incorporating a forgetting factor mechanism into the point process log-likelihood to enforce adaptivity and employ -regularization to capture the sparsity. We provide a rigorous analysis of the maximizers of the objective function, which extends the guarantees of compressed sensing to our setting. We construct two recursive filters for online estimation of the parameter vectors based on proximal optimization techniques, as well as a novel filter for recursive computation of statistical confidence regions. Simulation studies reveal that our algorithms outperform several existing point process filters in terms of trackability, goodness-of-fit and mean square error. We finally apply our filtering algorithms to experimentally recorded spiking data from the ferret primary auditory cortex during attentive behavior in a click rate discrimination task. Our analysis provides new insights into the time-course of the spectrotemporal receptive field plasticity of the auditory neurons.
机译:我们考虑以在线方式估计点过程模型的稀疏时变参数向量的问题,其中观测和输入分别由二进制和连续时间序列组成。我们通过将遗忘因子机制整合到点过程对数似然中来增强适应性并采用正则化来捕获稀疏性,从而构造出一种新颖的目标函数。我们对目标函数的最大值进行了严格的分析,从而将压缩感知的保证扩展到了我们的设置。我们基于近端优化技术构造了两个用于参数向量在线估计的递归过滤器,以及用于统计置信度区域的递归计算的新型过滤器。仿真研究表明,在可追踪性,拟合优度和均方误差方面,我们的算法优于几种现有的点过程滤波器。最后,我们将过滤算法应用于在点击率识别任务中的细心行为期间,来自雪貂初级听觉皮层的实验记录的尖峰数据。我们的分析为听神经元的光谱时间感受野可塑性的时程提供了新的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号