首页> 外文期刊>Signal Processing, IEEE Transactions on >Discrete Signal Processing on Graphs: Sampling Theory
【24h】

Discrete Signal Processing on Graphs: Sampling Theory

机译:图上的离散信号处理:<?Pub _newline?>采样理论

获取原文
获取原文并翻译 | 示例

摘要

We propose a sampling theory for signals that are supported on either directed or undirected graphs. The theory follows the same paradigm as classical sampling theory. We show that perfect recovery is possible for graph signals bandlimited under the graph Fourier transform. The sampled signal coefficients form a new graph signal, whose corresponding graph structure preserves the first-order difference of the original graph signal. For general graphs, an optimal sampling operator based on experimentally designed sampling is proposed to guarantee perfect recovery and robustness to noise; for graphs whose graph Fourier transforms are frames with maximal robustness to erasures as well as for Erdős-Rényi graphs, random sampling leads to perfect recovery with high probability. We further establish the connection to the sampling theory of finite discrete-time signal processing and previous work on signal recovery on graphs. To handle full-band graph signals, we propose a graph filter bank based on sampling theory on graphs. Finally, we apply the proposed sampling theory to semi-supervised classification of online blogs and digit images, where we achieve similar or better performance with fewer labeled samples compared to previous work.
机译:我们为有向图或无向图支持的信号提出了一种采样理论。该理论遵循与经典抽样理论相同的范例。我们表明,对于图傅立叶变换下带宽受限的图信号,可以实现完美的恢复。采样的信号系数形成一个新的图形信号,其对应的图形结构保留了原始图形信号的一阶差分。对于一般图形,提出了一种基于实验设计采样的最优采样算子,以保证完美的恢复和对噪声的鲁棒性。对于图的傅里叶变换是对擦除具有最大鲁棒性的帧的图,以及对于Erdős-Rényi图,随机采样可以以很高的概率实现完美的恢复。我们进一步建立了与有限离散时间信号处理的采样理论以及图形上信号恢复的先前工作的联系。为了处理全波段图形信号,我们提出了一种基于图形采样理论的图形滤波器组。最后,我们将提出的抽样理论应用于在线博客和数字图像的半监督分类中,与以前的工作相比,我们在使用更少的带标签样本的情况下获得了相似或更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号