首页> 外文期刊>IEEE Transactions on Semiconductor Manufacturing >Metrology Challenges for 45-nm Strained-Si Device Technology
【24h】

Metrology Challenges for 45-nm Strained-Si Device Technology

机译:45纳米应变硅器件技术的计量挑战

获取原文
获取原文并翻译 | 示例
           

摘要

The semiconductor industry has maintained its historical exponential improvement in performance by aggressively scaling transistor dimensions. However, as devices approach sub-100-nm dimensions, scaling becomes more challenging and new materials are required to overcome the fundamental physical limitations imposed by existing materials. For example, as power supply voltages continue to decrease with successive scaling, enhancing carrier mobility using biaxially tensile-stressed Si on relaxed SiGe on SOI and on bulk substrates has become a viable option to sustain continual drive current increase without traditional scaling. Although the addition of strained-Si to conventional MOSFET devices is compatible with existing mainstream CMOS process technology, there are new device and process integration challenges, wafer quality monitoring demands, and stringent requirements for film morphology and strain uniformity, imposing new demands on material characterization. Material requirements for strained-Si CMOS devices include having uniform SiGe thickness, Ge composition, and strain distribution. These are required to maintain uniform device performance as well as low defect density for high minority carrier lifetimes and transconductance, as well as low surface roughness to minimize the impact of interface scattering on carrier mobilities. The parameters of interest in strained-Si CMOS technology include SiGe and Si channel thickness, Ge composition, strain, dislocation density, interface quality, and roughness. Nondestructive inline metrology techniques include spectroscopic ellipsometry for film thickness and Ge composition, X-ray reflectivity for thickness, density, and roughness measurements, X-ray fluorescence for Ge composition, UV-Raman spectroscopy for channel strain characterization, IR photoluminescence for defect detection, and X-ray diffraction for both Ge content and strain measurement. While most of these techniques are well established in the semiconductor -industry, some will require development for application to volume manufacturing. This paper will focus on various metrology approaches used in strained-Si CMOS devices
机译:半导体行业通过积极地按比例缩小晶体管尺寸来保持其性能的历史性指数改进。但是,随着器件接近100纳米以下的尺寸,缩放变得更具挑战性,并且需要新材料来克服现有材料带来的基本物理限制。例如,随着电源电压随着连续缩放而持续降低,在SOI上和块状衬底上的松弛SiGe上使用双轴拉伸应力Si来提高载流子迁移率已成为在不进行传统缩放的情况下维持持续驱动电流增加的可行选择。尽管在传统的MOSFET器件中添加应变硅与现有的主流CMOS工艺技术兼容,但仍存在新的器件和工艺集成挑战,晶圆质量监控要求以及对薄膜形态和应变均匀性的严格要求,这对材料表征提出了新要求。应变Si CMOS器件的材料要求包括具有均匀的SiGe厚度,Ge组成和应变分布。这些是维持均匀器件性能以及低缺陷密度以提高少数载流子寿命和跨导所需的,以及低表面粗糙度以最小化界面散射对载流子迁移率的影响。应变硅CMOS技术中感兴趣的参数包括SiGe和Si沟道厚度,Ge组成,应变,位错密度,界面质量和粗糙度。无损在线计量技术包括用于膜厚和Ge组成的椭圆偏振光谱法,用于厚度,密度和粗糙度测量的X射线反射率,用于Ge组成的X射线荧光,用于通道应变表征的UV拉曼光谱,用于缺陷检测的IR光致发光, X射线衍射用于Ge含量和应变测量。尽管这些技术中的大多数已在半导体行业中确立,但有些技术需要进行开发才能应用于批量生产。本文将重点介绍应变硅CMOS器件中使用的各种计量方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号