首页> 外文期刊>IEEE Transactions on Robotics >C-CROC: Continuous and Convex Resolution of Centroidal Dynamic Trajectories for Legged Robots in Multicontact Scenarios
【24h】

C-CROC: Continuous and Convex Resolution of Centroidal Dynamic Trajectories for Legged Robots in Multicontact Scenarios

机译:C-Croc:多连续情景中的腿机器人的心脏动态轨迹连续和凸分辨率

获取原文
获取原文并翻译 | 示例

摘要

Synthesizing legged locomotion requires planning one or several steps ahead (literally): when and where, and with which effector should the next contact(s) be created between the robot and the environment? Validating a contact candidate implies a minima the resolution of a slow, nonlinear optimization problem, to demonstrate that a center of mass (CoM) trajectory, compatible with the contact transition constraints, exists. We propose a conservative reformulation of this trajectory generation problem as a convex 3-D linear program, named convex resolution of centroidal dynamic trajectories (CROC). It results from the observation that if the CoM trajectory is a polynomial with only one free variable coefficient, the nonlinearity of the problem disappears. This has two consequences. On the positive side, in terms of computation times, CROC outperforms the state of the art by at least one order of magnitude, and allows to consider interactive applications (with a planning time roughly equal to the motion time). On the negative side, in our experiments, our approach finds a majority of the feasible trajectories found by a nonlinear solver, but not all of them. Still, we demonstrate that the solution space covered by CROC is large enough to achieve the automated planning of a large variety of locomotion tasks for different robots, demonstrated in simulation and on the real HRP-2 robot, several of which were rarely seen before. Another significant contribution is the introduction of a Bezier curve representation of the problem, which guarantees that the constraints of the CoM trajectory are verified continuously, and not only at discrete points as traditionally done. This formulation is lossless, and results in more robust trajectories. It is not restricted to CROC, but could rather be integrated with any method from the state of the art.
机译:合成腿的运动需要计划一个或几个步骤(字面意思):当在机器人和环境之间建立下一个联系人时,何处以及那里的何处,以及哪些效应?验证联系人候选者意味着最小的分辨率,慢,非线性优化问题,以证明与接触过渡约束兼容的质量中心(COM)轨迹存在。我们提出了对该轨迹生成问题的保守重新制定作为凸三维线性程序,名为Convex分辨率的质心动态轨迹(Croc)。它来自观察结果,如果COM轨迹是仅具有一个自由变量系数的多项式,则问题的非线性消失。这有两种后果。在正面,在计算时间方面,Croc以至少一种数量级优于现有技术,并且允许考虑交互式应用(规划时间大致等于运动时间)。在消极方面,在我们的实验中,我们的方法发现了非线性求解器发现的大多数可行的轨迹,但并非所有这些都是其中的所有可行的轨迹。尽管如此,我们仍然证明Croc涵盖的解决方案足够大,以实现不同机器人的各种运动任务的自动规划,在模拟和实际HRP-2机器人上展示,其中几个是之前很少见到的。另一个重要贡献是引入问题的贝塞尔曲线表示,这保证了COM轨迹的约束是不断验证的,而且不仅在传统上完成的离散点。这种配方是无损的,导致更强大的轨迹。它不限于Croc,但宁可与来自现有技术的任何方法集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号