首页> 外文期刊>IEEE Transactions on Robotics >Zero Step Capturability for Legged Robots in Multicontact
【24h】

Zero Step Capturability for Legged Robots in Multicontact

机译:多触点腿式机器人的零步捕获

获取原文
获取原文并翻译 | 示例

摘要

The ability to anticipate a fall is fundamental for any robot that has to balance. Currently, fast fall-prediction algorithms only exist for simple models, such as the linear inverted pendulum model (LIPM), whose validity breaks down in multicontact scenarios (i.e., when contacts are not limited to a flat ground). This paper presents a fast fall-prediction algorithm based on the point-mass model, which remains valid in multicontact scenarios. The key assumption of our algorithm is that, in order to come to a stop without changing its contacts, a robot only needs to accelerate its center of mass in the direction opposite to its velocity. This assumption allows us to predict the fall by means of a convex optimal control problem, which we solve with a fast custom algorithm (less than 11 ms of computation time). We validated the approach through extensive simulations with the humanoid robot HRP-2 in randomly-sampled scenarios. Comparisons with standard LIPM-based methods demonstrate the superiority of our algorithm in predicting the fall of the robot, when controlled with a state-of-the-art balance controller. This paper lays the foundations for the solution of the challenging problem of push recovery in multicontact scenarios.
机译:预测跌倒的能力对于任何必须保持​​平衡的机器人都是至关重要的。当前,快速跌倒预测算法仅适用于简单模型,例如线性倒立摆模型(LIPM),其有效性在多触点情况下(即,当触点不限于平坦地面时)会失效。本文提出了一种基于点质量模型的快速跌倒预测算法,该算法在多接触场景下仍然有效。我们算法的关键假设是,为了不改变接触而停下来,机器人只需要沿与速度相反的方向加速其质心。该假设使我们能够通过凸最优控制问题来预测跌倒,我们可以使用快速的自定义算法(少于11 ms的计算时间)解决该问题。我们通过在随机采样的场景中使用人形机器人HRP-2进行了广泛的仿真,验证了该方法。与基于LIPM的标准方法进行比较,证明了在使用最新的平衡控制器进行控制时,我们的算法在预测机器人跌倒方面的优势。本文为解决多触点方案中的推挽式恢复这一具有挑战性的问题奠定了基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号