首页> 外文期刊>IEEE Transactions on Robotics >Simultaneous Localization and Map Building Using the Probabilistic Multi-Hypothesis Tracker
【24h】

Simultaneous Localization and Map Building Using the Probabilistic Multi-Hypothesis Tracker

机译:使用概率多假设跟踪器同时定位和地图构建

获取原文
获取原文并翻译 | 示例

摘要

This paper demonstrates how the data-association technique known as the probabilistic multi-hypothesis tracker (PMHT) can be applied to the feature-based simultaneous localization and map building (SLAM) problem. The main advantage of PMHT over other conventional data-association techniques is that it has low computational complexity, while still providing good performance. Low complexity is a particularly desirable feature for the SLAM problem where the estimators used may already be costly to implement. The paper also proposes an estimation approach based on generalized expectation-maximization iterations of the PMHT SLAM problem, which is able to achieve low computation complexity at the expense of local convergence. The performance of the PMHT SLAM algorithm is compared with other approaches, and its output is demonstrated on a benchmark data set recorded in Victoria Park, Sydney, Australia
机译:本文演示了如何将称为概率多假设跟踪器(PMHT)的数据关联技术应用于基于特征的同时定位和地图构建(SLAM)问题。与其他常规数据关联技术相比,PMHT的主要优势在于它具有较低的计算复杂度,同时仍提供良好的性能。对于SLAM问题,低复杂度是特别理想的功能,在这种情况下,使用的估计器可能已经实现起来很昂贵。本文还提出了一种基于PMHT SLAM问题的广义期望最大化迭代的估计方法,该方法能够以较低的局部收敛性实现较低的计算复杂度。将PMHT SLAM算法的性能与其他方法进行了比较,并在澳大利亚悉尼维多利亚公园记录的基准数据集上演示了其输出。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号