首页> 外文期刊>IEEE Transactions on Robotics >Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot
【24h】

Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot

机译:五连杆欠驱动3-D双足机器人的渐近稳定行走

获取原文
获取原文并翻译 | 示例

摘要

This paper presents three feedback controllers that achieve an asymptotically stable, periodic, and fast walking gait for a 3-D bipedal robot consisting of a torso, revolute knees, and passive (unactuated) point feet. The walking surface is assumed to be rigid and flat; the contact between the robot and the walking surface is assumed to inhibit yaw rotation. The studied robot has 8 DOF in the single support phase and six actuators. In addition to the reduced number of actuators, the interest of studying robots with point feet is that the feedback control solution must explicitly account for the robot''s natural dynamics in order to achieve balance while walking. We use an extension of the method of virtual constraints and hybrid zero dynamics (HZD), a very successful method for planar bipeds, in order to simultaneously compute a periodic orbit and an autonomous feedback controller that realizes the orbit, for a 3-D (spatial) bipedal walking robot. This method allows the computations for the controller design and the periodic orbit to be carried out on a 2-DOF subsystem of the 8-DOF robot model. The stability of the walking gait under closed-loop control is evaluated with the linearization of the restricted PoincarÉ map of the HZD. Most periodic walking gaits for this robot are unstable when the controlled outputs are selected to be the actuated coordinates. Three strategies are explored to produce stable walking. The first strategy consists of imposing a stability condition during the search of a periodic gait by optimization. The second strategy uses an event-based controller to modify the eigenvalues of the (linearized) PoincarÉ map. In the third approach, the effect of output selection on the zero dynamics is discussed and a pertinent choice of outputs is proposed, leading to stabilization without the use of a supplemental event-based controller.
机译:本文介绍了三个反馈控制器,它们为3D双足机器人(包括躯干,旋转膝盖和被动(未致动)点脚)实现了渐近稳定,周期性和快速的步行步态。假定行走表面是刚性且平坦的;假定机器人与行走表面之间的接触会阻止偏航旋转。被研究的机器人在单个支撑阶段具有8个自由度和六个执行器。除了减少执行器的数量外,研究带点脚的机器人的兴趣还在于,反馈控制解决方案必须明确考虑机器人的自然动力学,以便在行走时达到平衡。我们使用虚拟约束和混合零动力学(HZD)方法的扩展,这是一种非常成功的平面两足动物方法,以便同时计算周期轨道和实现该轨道的自主反馈控制器,用于3-D(空间)双足步行机器人。这种方法允许在8自由度机器人模型的2自由度子系统上进行控制器设计和周期轨道的计算。通过对HZD的受限庞加莱图进行线性化,可以评估闭环控制下步行步态的稳定性。当选择受控输出作为驱动坐标时,此机器人的大多数周期性步态都不稳定。探索了三种产生稳定步行的策略。第一种策略是在通过优化搜索周期性步态时施加稳定条件。第二种策略使用基于事件的控制器来修改(线性化)庞加莱图的特征值。在第三种方法中,讨论了输出选择对零动态的影响,并提出了相关的输出选择,从而在不使用基于事件的补充控制器的情况下实现了稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号