首页> 外文期刊>IEEE Transactions on Robotics >FreMEn: Frequency Map Enhancement for Long-Term Mobile Robot Autonomy in Changing Environments
【24h】

FreMEn: Frequency Map Enhancement for Long-Term Mobile Robot Autonomy in Changing Environments

机译:FreMEn:频率图增强功能,可在不断变化的环境中实现长期的移动机器人自主权

获取原文
获取原文并翻译 | 示例

摘要

We present a new approach to long-term mobile robot mapping in dynamic indoor environments. Unlike traditional world models that are tailored to represent static scenes, our approach explicitly models environmental dynamics. We assume that some of the hidden processes that influence the dynamic environment states are periodic and model the uncertainty of the estimated state variables by their frequency spectra. The spectral model can represent arbitrary timescales of environment dynamics with low memory requirements. Transformation of the spectral model to the time domain allows for the prediction of the future environment states, which improves the robot's long-term performance in changing environments. Experiments performed over time periods of months to years demonstrate that the approach can efficiently represent large numbers of observations and reliably predict future environment states. The experiments indicate that the model's predictive capabilities improve mobile robot localization and navigation in changing environments.
机译:我们提出了一种在动态室内环境中进行长期移动机器人映射的新方法。与专为表示静态场景而定制的传统世界模型不同,我们的方法显式地对环境动力学进行建模。我们假设一些影响动态环境状态的隐藏过程是周期性的,并通过其频谱对估计的状态变量的不确定性进行建模。频谱模型可以表示具有低内存需求的环境动力学的任意时间尺度。通过将光谱模型转换为时域,可以预测未来的环境状态,从而提高了机器人在不断变化的环境中的长期性能。经过数月至数年的时间进行的实验表明,该方法可以有效地表示大量观察结果并可靠地预测未来的环境状态。实验表明,该模型的预测能力可以在变化的环境中改善移动机器人的定位和导航。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号