首页> 外文期刊>IEEE Transactions on Robotics and Automation >Hidden Markov model approach to skill learning and its application to telerobotics
【24h】

Hidden Markov model approach to skill learning and its application to telerobotics

机译:技能学习的隐马尔可夫模型方法及其在机器人领域的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we discuss the problem of how human skill can be represented as a parametric model using a hidden Markov model (HMM), and how an HMM-based skill model can be used to learn human skill. HMM is feasible to characterize a doubly stochastic process-measurable action and immeasurable mental states-that is involved in the skill learning. We formulated the learning problem as a multidimensional HMM and developed a testbed for a variety of skill learning applications. Based on "the most likely performance" criterion, the best action sequence can be selected from all previously measured action data by modeling the skill as an HMM. The proposed method has been implemented in the teleoperation control of a space station robot system, and some important implementation issues have been discussed. The method allows a robot to learn human skill in certain tasks and to improve motion performance.
机译:在本文中,我们讨论了如何使用隐马尔可夫模型(HMM)将人类技能表示为参数模型的问题,以及如何将基于HMM的技能模型用于学习人类技能的问题。 HMM可用于表征技能学习中涉及的双重随机过程(可测量的动作和不可测量的心理状态)。我们将学习问题表述为多维HMM,并为各种技能学习应用程序开发了一个测试平台。基于“最可能的表现”标准,可以通过将技能建模为HMM,从所有先前测得的动作数据中选择最佳动作序列。该方法已在空间站机器人系统的遥操作控制中实现,并讨论了一些重要的实现问题。该方法允许机器人学习某些任务中的人类技能并改善运动表现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号