首页> 外文期刊>IEEE Transactions on Robotics and Automation >Mobile robot self-location using model-image feature correspondence
【24h】

Mobile robot self-location using model-image feature correspondence

机译:使用模型-图像特征对应关系的移动机器人自定位

获取原文
获取原文并翻译 | 示例

摘要

The problem of establishing reliable and accurate correspondence between a stored 3-D model and a 2-D image of it is important in many computer vision tasks, including model-based object recognition, autonomous navigation, pose estimation, airborne surveillance, and reconnaissance. This paper presents an approach to solving this problem in the context of autonomous navigation of a mobile robot in an outdoor urban, man-made environment. The robot's environment is assumed consist of polyhedral buildings. The 3-D descriptions of the lines constituting the buildings' rooftops is assumed to be given as the world model. The robot's position and pose are estimated by establishing correspondence between the straight line features extracted from the images acquired by the robot and the model features. The correspondence problem is formulated as a two-stage constrained search problem. Geometric visibility constraints are used to reduce the search space of possible model-image feature correspondences. Techniques for effectively deriving and capturing these visibility constraints from the given world model are presented. The position estimation technique presented is shown to be robust and accurate even in the presence of errors in the feature detection, incomplete model description, and occlusions. Experimental results of testing this approach using a model of an airport scene are presented.
机译:在存储的3D模型和2D图像之间建立可靠和准确的对应关系的问题在许多计算机视觉任务中都很重要,包括基于模型的对象识别,自主导航,姿态估计,机载监视和侦察。本文提出了一种在室外城市人造环境中移动机器人自主导航的情况下解决此问题的方法。假定机器人的环境由多面体建筑物组成。假定对构成建筑物屋顶的线条的3D描述为世界模型。通过建立从机器人获取的图像中提取的直线特征与模型特征之间的对应关系来估计机器人的位置和姿态。对应问题被表述为两阶段约束搜索问题。几何可见性约束用于减少可能的模型图像特征对应关系的搜索空间。提出了从给定的世界模型中有效推导和捕获这些可见性约束的技术。所显示的位置估计技术即使在特征检测,模型描述不完整和遮挡中都存在错误的情况下,也显示出鲁棒性和准确性。给出了使用机场场景模型测试此方法的实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号