首页> 外文期刊>IEEE Transactions on Robotics and Automation >Self-calibration of parallel mechanisms with a case study on Stewart platforms
【24h】

Self-calibration of parallel mechanisms with a case study on Stewart platforms

机译:并联机构的自校准,以Stewart平台为例

获取原文
获取原文并翻译 | 示例

摘要

Self-calibration has the potential of: 1) removing the dependence on any external pose sensing information; 2) producing high accuracy measurement data over the entire workspace of the system with an extremely fast measurement rate; 3) being automated and completely noninvasive; 4) facilitating on-line accuracy compensation; and 5) being cost effective. A general framework is introduced in this paper for the self-calibration of parallel manipulators. The concept of creating forward and inverse measurement residuals by exploring conflicting information provided with redundant sensing is proposed. Some of these ideas have been widely used for robot calibration when robot end-effector poses are available. By this treatment, many existing kinematic parameter estimation techniques can be applied for the self-calibration of parallel mechanisms. It is illustrated through a case study, i.e. calibration of the Stewart platform, that with this framework the design of a suitable self-calibration system and the formulation of the relevant mathematical model become more systematic. A few principles important to the system self-calibration are also demonstrated through the case study. It is shown that by installing a number of redundant sensors on the Stewart platform, the system is able to perform self-calibration. The approach provides a tool for rapid and autonomous calibration of the parallel mechanism.
机译:自校准具有以下潜力:1)消除对任何外部姿势感应信息的依赖; 2)以极快的测量速率在系统的整个工作空间中生成高精度的测量数据; 3)自动化且完全无创; 4)促进在线精度补偿; 5)具有成本效益。本文介绍了用于并联机械手自校准的通用框架。提出了通过探索具有冗余感测的冲突信息来创建正向和反向测量残差的概念。当可获得机器人末端执行器姿势时,其中一些想法已广泛用于机器人校准。通过这种处理,许多现有的运动学参数估计技术可以应用于并联机构的自校准。通过案例研究(即Stewart平台的校准)可以说明,在此框架下,合适的自校准系统的设计和相关数学模型的制定变得更加系统化。案例研究还说明了一些对系统自校准很重要的原理。结果表明,通过在Stewart平台上安装多个冗余传感器,该系统能够执行自校准。该方法提供了一种用于快速自动校准并联机构的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号