首页> 外文期刊>IEEE Transactions on Reliability >Goodness-of-fit tests based on spacings for progressively type-II censored data from a general location-scale distribution
【24h】

Goodness-of-fit tests based on spacings for progressively type-II censored data from a general location-scale distribution

机译:基于间隔的拟合优度检验,用于一般位置比例分布中的渐进式II型审查数据

获取原文
获取原文并翻译 | 示例

摘要

There has been extensive research on goodness-of-fit procedures for testing whether or not a sample comes from a specified distribution. These goodness-of-fit tests range from graphical techniques, to tests which exploit characterization results for the specified underlying model. In this article, we propose a goodness-of-fit test for the location-scale family based on progressively Type-II censored data. The test statistic is based on sample spacings, and generalizes a test procedure proposed by Tiku . The distribution of the test statistic is shown to be approximated closely by a s-normal distribution. However, in certain situations it would be better to use simulated critical values instead of the s-normal approximation. We examine the performance of this test for the s-normal and extreme-value (Gumbel) models against different alternatives through Monte Carlo simulations. We also discuss two methods of power approximation based on s-normality, and compare the results with those obtained by simulation. Results of the simulation study for a wide range of sample sizes, censoring schemes, and different alternatives reveal that the proposed test has good power properties in detecting departures from the s-normal and Gumbel distributions. Finally, we illustrate the method proposed here using real data from a life-testing experiment. It is important to mention here that this test can be extended to multi-sample situations in a manner similar to that of Balakrishnan et al.
机译:关于拟合优度程序的广泛研究用于测试样品是否来自指定的分布。这些拟合优度测试的范围从图形技术到利用指定基础模型的表征结果的测试。在本文中,我们基于渐进式II型审查数据,提出了位置尺度家庭的拟合优度检验。测试统计数据基于样本间距,并概括了Tiku提出的测试程序。检验统计量的分布显示为非常接近于s正态分布。但是,在某些情况下,最好使用模拟的临界值而不是s-法线近似值。我们通过蒙特卡洛模拟,针对不同的替代方案,针对s正态和极值(Gumbel)模型检查了该测试的性能。我们还讨论了两种基于s-正态的功率近似方法,并将结果与​​通过仿真获得的结果进行比较。针对广泛样本量,检查方案和不同替代方案的仿真研究结果表明,所提出的测试在检测偏离s正态分布和Gumbel分布时具有良好的功效。最后,我们使用寿命测试实验中的真实数据来说明此处提出的方法。在这里重要的是要提到,该测试可以以类似于Balakrishnan等人的方式扩展到多样本情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号